• Title/Summary/Keyword: Solar Cooling

Search Result 537, Processing Time 0.033 seconds

Development of monitoring system to prevent inflow of marine life into the nuclear power plant (해양생물의 원전 취수구 유입 방지를 위한 모니터링 시스템 개발)

  • Tae-Jong KANG;Eun-Bi MIN;Joong-Ro SHIN;Doo-Jin HWANG
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.60 no.3
    • /
    • pp.277-289
    • /
    • 2024
  • Climate change has led to a significant increase in jellyfish populations globally, causing various problems. For power plants that use nearby seawater for cooling, the intrusion of jellyfish into intake systems can block the flow, leading to reduced output or even shutdowns. This issue is compounded by other small marine organisms like shrimp and salps, making it urgent to develop solutions to prevent their intrusion. This study addressed the problem using the BioSonics DT-X 120 kHz scientific fish finder to conduct preliminary tank experiments. We also deployed underwater acoustic and camera buoys around the intake of nuclear power plant, utilizing a bidirectional communication system between sea and land to collect data. Data collection took place from July 31, 2023 to August 1, 2023. While harmful organisms such as jellyfish and salps were not detected, we successfully gathered acoustic data on small fish measuring backscattering strength (SV). Analysis showed that fish schools were more prominent in the evening than during the day. The highest fish distribution was observed at 3:30 AM on July 31 with an SV of -44.8 dB while the lowest was at 12:30 PM on the same day with an SV of -63.4 dB. Additionally, a solar-powered system was used to enable real-time data acquisition from sea buoys with smooth communication between the land server and the offshore buoy located 1.8 km away. This research developed an acoustic-based monitoring system for detecting harmful organisms around the intake and provided foundational data for preventing marine organism intrusion and planning effective measures.

Structure and Variation of Tidal Flat Temperature in Gomso Bay, West Coast of Korea (서해안 곰소만 갯벌 온도의 구조 및 변화)

  • Lee, Sang-Ho;Cho, Yang-Ki;You, Kwang-Woo;Kim, Young-Gon;Choi, Hyun-Yong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.10 no.1
    • /
    • pp.100-112
    • /
    • 2005
  • Soil temperature was measured from the surface to 40 cm depth at three stations with different heights in tidal flat of Gomso Bay, west coast of Korea, for one month in every season 2004 to examine the thermal structure and the variation. Mean temperature in surface layer was higher in summer and lower in winter than in lower layer, reflecting the seasonal variation of vertically propagating structure of temperature by heating and cooling from the tidal flat surface. Standard deviation of temperature decreased from the surface to lower layer. Periodic variations of solar radiation energy and tide mainly caused short term variation of soil temperature, which was also intermittently influenced by precipitation and wind. Time series analysis showed the power spectral energy peaks at the periods of 24, 12 and 8 hours, and the strongest peak appeared at 24 hour period. These peaks can be interpreted as temperature waves forced by variations of solar radiation, diurnal tide and interaction of both variations, respectively. EOF analysis showed that the first and the second modes resolved 96% of variation of vertical temperature structure. The first mode was interpreted as the heating antl cooling from tidal flat surface and the second mode as the effect of phase lag produced by temperature wave propagation in the soil. The phase of heat transfer by 24 hour period wave, analyzed by cross spectrum, showed that mean phase difference of the temperature wave increased almost linearly with the soil depth. The time lags by the phase difference from surface to 10, 20 and 40cm were 3.2,6.5 and 9.8 hours, respectively. Vertical thermal diffusivity of temperature wave of 24 hour period was estimated using one dimensional thermal diffusion model. Average diffusivity over the soil depths and seasons resulted in $0.70{\times}10^{-6}m^2/s$ at the middle station and $0.57{\times}10^{-6}m^2/s$ at the lowest station. The depth-averaged diffusivity was large in spring and small in summer and the seasonal mean diffusivity vertically increased from 2 cm to 10 cm and decreased from 10 cm to 40 cm. Thermal propagation speeds were estimated by $8.75{\times}10^{-4}cm/s,\;3.8{\times}10{-4}cm/s,\;and\;1.7{\times}10^{-4}cm/s$ from 2 cm to 10 cm, 20 cm and 40 cm, respectively, indicating the speed reduction with depth increasing from the surface.

Cultivation Demonstration of Paprika (Capsicum annuum L.) Cultivars Using the Large Single-span Plastic Greenhouse to Overcome High Temperature in South Korea (고온기 대형 단동하우스를 이용한 파프리카 품종별 재배실증)

  • Yeo, Kyung-Hwan;Park, Seok Ho;Yu, In Ho;Lee, Hee Ju;Wi, Seung Hwan;Cho, Myeong Cheoul;Lee, Woo Moon;Huh, Yun Chan
    • Journal of Bio-Environment Control
    • /
    • v.30 no.4
    • /
    • pp.429-440
    • /
    • 2021
  • During the growing period, the integrated solar radiation inside the greenhouse was 12.7MJ·m-2d-1, and which was 90% of the average daily global radiation outside the greenhouse, 14.1MJ·m-2d-1. The 24-hour average temperature inside the greenhouse from July to August, which has the highest temperature of the year, was 3.04℃ lower than the outside temperature, and 4.07℃ lower after the rainy season. Before the operation of fog cooling system, the average daily RH (%) was lowered to a minimum of 40% (20% for daytime), making it inappropriate for paprika cultivation, but after the operation of fog system, the daily RH during the daytime increased to 70 to 85%. The average humidity deficit increased to a maximum of 12.7g/m3 before fog supply, but decreased to 3.7g/m3 between July and August after fog supply, and increased again after October. The daytime residual CO2 concentration inside the greenhouse was 707 ppm on average during the whole growing period. The marketable yield of paprika harvested from July 27th to November 23rd, 2020 was higher in 'DSP-7054' and 'Allrounder' with 14,255kg/10a and 14,161kg/10a, respectively, followed by 'K-Gloria orange', 'Volante' and 'Nagono'. There were significant differences between paprika cultivars in fruit length, fruit diameter, soluble solids (°Brix), and flash thickness (mm) of paprika produced in summer season at large single-span plastic greenhouse. The soluble solids content was higher in the orange cultivars 'DSP-7054' and 'Naarangi' and the flesh thickness was higher in the yellow and orange cultivars, with 'K-Gloria orange' and 'Allrounder' being the thickest. The marketable yield of paprika, which was treated with cooling and heating treatments in the root zone, increased by 16.1% in the entire cultivars compared to the untreated ones, increased by 16.5% in 'Nagano', 10.3% in the 'Allrounder', 20.2% in the 'Naarangi', and 17.3% in 'Raon red'.

Effects of white Wash Coating Agent on the Growth of Strawberry Seedlings in Plastic Greenhouses (딸기 육묘시설에서 차광도포제 이용 효과)

  • Lee, Jae Han;Kwon, Joon Kook;Ham, Young Jae;Yun, Moo Ryong;Park, Kyoung Sub;Choi, Hyo Gil;Yeo, Kyung Hwan;Lee, Jung Sup;Khoshimkhujaev, Bekhzod
    • Journal of Bio-Environment Control
    • /
    • v.25 no.4
    • /
    • pp.249-254
    • /
    • 2016
  • This study was carried out to evaluate the efficiency of white shading agent for reduction of greenhouse air temperature and to develop cost-effective cooling strategies for strawberry seedling production during hot seasons. Experiment results showed that solar radiation ($W/m^2$) was reduced by 14~17% and 33~37% for 15% and 35% white wash shading treatments, respectively, in black shading net treatment solar radiation was reduced by 39~44% compared to non-shaded treatment. Measured greenhouse air temperatures in 15% and 35% white wash shading treatments were $38.4^{\circ}C$ and $36.5^{\circ}C$, respectively, whereas in black shading net covered greenhouses air temperature was $35.1^{\circ}C$, thereby 35% and 15% shading treatments showed 3.3 and $1.9^{\circ}C$ higher air temperatures than black net shading treatment. Crown diameter of strawberry plants in black net shading treatment was 7.5mm, and in 15% and 35% white wash shading treatments were 8.6mm and 8.3mm, respectively. Strawberry transplants grown in 35% white wash shading treatment produced the highest above ground fresh weight(7.8g), followed by 15% white wash shading(6.7g) and black net shading treatments(5.8g). Also, both 15% and 35% white wash shading treatments produced higher root fresh weight(4.1g and 4.3g) compare to black net shading treatments(2.7g).

Analysis of Greenhouse Thermal Environment by Model Simulation (시뮬레이션 모형에 의한 온실의 열환경 분석)

  • 서원명;윤용철
    • Journal of Bio-Environment Control
    • /
    • v.5 no.2
    • /
    • pp.215-235
    • /
    • 1996
  • The thermal analysis by mathematical model simulation makes it possible to reasonably predict heating and/or cooling requirements of certain greenhouses located under various geographical and climatic environment. It is another advantages of model simulation technique to be able to make it possible to select appropriate heating system, to set up energy utilization strategy, to schedule seasonal crop pattern, as well as to determine new greenhouse ranges. In this study, the control pattern for greenhouse microclimate is categorized as cooling and heating. Dynamic model was adopted to simulate heating requirements and/or energy conservation effectiveness such as energy saving by night-time thermal curtain, estimation of Heating Degree-Hours(HDH), long time prediction of greenhouse thermal behavior, etc. On the other hand, the cooling effects of ventilation, shading, and pad ||||&|||| fan system were partly analyzed by static model. By the experimental work with small size model greenhouse of 1.2m$\times$2.4m, it was found that cooling the greenhouse by spraying cold water directly on greenhouse cover surface or by recirculating cold water through heat exchangers would be effective in greenhouse summer cooling. The mathematical model developed for greenhouse model simulation is highly applicable because it can reflects various climatic factors like temperature, humidity, beam and diffuse solar radiation, wind velocity, etc. This model was closely verified by various weather data obtained through long period greenhouse experiment. Most of the materials relating with greenhouse heating or cooling components were obtained from model greenhouse simulated mathematically by using typical year(1987) data of Jinju Gyeongnam. But some of the materials relating with greenhouse cooling was obtained by performing model experiments which include analyzing cooling effect of water sprayed directly on greenhouse roof surface. The results are summarized as follows : 1. The heating requirements of model greenhouse were highly related with the minimum temperature set for given greenhouse. The setting temperature at night-time is much more influential on heating energy requirement than that at day-time. Therefore It is highly recommended that night- time setting temperature should be carefully determined and controlled. 2. The HDH data obtained by conventional method were estimated on the basis of considerably long term average weather temperature together with the standard base temperature(usually 18.3$^{\circ}C$). This kind of data can merely be used as a relative comparison criteria about heating load, but is not applicable in the calculation of greenhouse heating requirements because of the limited consideration of climatic factors and inappropriate base temperature. By comparing the HDM data with the results of simulation, it is found that the heating system design by HDH data will probably overshoot the actual heating requirement. 3. The energy saving effect of night-time thermal curtain as well as estimated heating requirement is found to be sensitively related with weather condition: Thermal curtain adopted for simulation showed high effectiveness in energy saving which amounts to more than 50% of annual heating requirement. 4. The ventilation performances doting warm seasons are mainly influenced by air exchange rate even though there are some variations depending on greenhouse structural difference, weather and cropping conditions. For air exchanges above 1 volume per minute, the reduction rate of temperature rise on both types of considered greenhouse becomes modest with the additional increase of ventilation capacity. Therefore the desirable ventilation capacity is assumed to be 1 air change per minute, which is the recommended ventilation rate in common greenhouse. 5. In glass covered greenhouse with full production, under clear weather of 50% RH, and continuous 1 air change per minute, the temperature drop in 50% shaded greenhouse and pad & fan systemed greenhouse is 2.6$^{\circ}C$ and.6.1$^{\circ}C$ respectively. The temperature in control greenhouse under continuous air change at this time was 36.6$^{\circ}C$ which was 5.3$^{\circ}C$ above ambient temperature. As a result the greenhouse temperature can be maintained 3$^{\circ}C$ below ambient temperature. But when RH is 80%, it was impossible to drop greenhouse temperature below ambient temperature because possible temperature reduction by pad ||||&|||| fan system at this time is not more than 2.4$^{\circ}C$. 6. During 3 months of hot summer season if the greenhouse is assumed to be cooled only when greenhouse temperature rise above 27$^{\circ}C$, the relationship between RH of ambient air and greenhouse temperature drop($\Delta$T) was formulated as follows : $\Delta$T= -0.077RH+7.7 7. Time dependent cooling effects performed by operation of each or combination of ventilation, 50% shading, pad & fan of 80% efficiency, were continuously predicted for one typical summer day long. When the greenhouse was cooled only by 1 air change per minute, greenhouse air temperature was 5$^{\circ}C$ above outdoor temperature. Either method alone can not drop greenhouse air temperature below outdoor temperature even under the fully cropped situations. But when both systems were operated together, greenhouse air temperature can be controlled to about 2.0-2.3$^{\circ}C$ below ambient temperature. 8. When the cool water of 6.5-8.5$^{\circ}C$ was sprayed on greenhouse roof surface with the water flow rate of 1.3 liter/min per unit greenhouse floor area, greenhouse air temperature could be dropped down to 16.5-18.$0^{\circ}C$, whlch is about 1$0^{\circ}C$ below the ambient temperature of 26.5-28.$0^{\circ}C$ at that time. The most important thing in cooling greenhouse air effectively with water spray may be obtaining plenty of cool water source like ground water itself or cold water produced by heat-pump. Future work is focused on not only analyzing the feasibility of heat pump operation but also finding the relationships between greenhouse air temperature(T$_{g}$ ), spraying water temperature(T$_{w}$ ), water flow rate(Q), and ambient temperature(T$_{o}$).

  • PDF

Seawater Temperature Variation at Aquafarms off Wando in the Southwest Coast of Korea (완도 양식장 해역의 수온변동)

  • Yang, Joon-Yong;Lee, Joon-Soo;Han, In-Sung;Choi, Yong-Kyu;Suh, Young-Sang
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.18 no.6
    • /
    • pp.514-519
    • /
    • 2012
  • Abalone culture is one of important coastal fisheries off Wando in the southeast coast of Korea. Since cage culture for abalones was popularized, Understanding of temperature variation, which is important to raise abalones and to prevent their mass mortalities, is necessary. We analyzed temperature data from 2005 to 2009 obtained at Sinji-do and Cheongsan-do off Wando. Sinji-do, which is relatively close to land, had yearly wide range of temperature and rate of temperature variation. It is likely to be caused by heating of solar radiation in summer and cooling in winter at the shallow area. Rate of temperature variation in autumn was higher than that in spring. In summer short term variation of temperature corresponding tidal period was distinguished clearly. Diurnal temperature range, abrupt temperature change, was larger open sea. Comparison between temperatures of two stations and favorable raising conditions of abalones showed that Cheongsan-do, located out to sea, appears to be more appropriate than Sinji-do.

A Case Study on the Meteorological Observation in Spring for the Atmospheric Environment Impact Assessment at Sangin-dong Dalbi Valley, Daegu (대기환경영향평가를 위한 대구광역시 상인동 달비골의 봄철 기상관측 사례분석)

  • Park, Jong-Kil;Jung, Woo-Sik;Hwang, Soo-Jin;Yoon, Ill-Hee;Park, Gil-Un;Kim, Sin-Ho;Kim, Seok-Cheol
    • Journal of Environmental Science International
    • /
    • v.17 no.9
    • /
    • pp.1053-1068
    • /
    • 2008
  • This study aims to produce fundamental database for Environment Impact Assessment by monitoring vertical structure of the atmosphere due to the mountain valley wind in spring season. For this, we observed surface and upper meteorological elements in Sangin-dong, Daegu using the rawinsonde and automatic weather system(AWS). In Sangin-dong, the weather condition was largely affected by mountains when compared to city center. The air temperature was low during the night time and day break, and similar to that of city center during the day time. Relative humidity also showed similar trend; high during the night time and day break and similar to that of city center during the day time. Solar radiation was higher than the city, and the daily maximum temperature was observed later than the city. The synoptic wind during the measurement period was west wind. But during the day time, the west wind was joined by the prevailing wind to become stronger than the night time. During the night time and daybreak, the impact of mountain wind lowered the overall temperature, showing strong geographical influence. The vertical structure of the atmosphere in Dalbi valley, Sangin-dong had a sharp change in air temperature, relative humidity, potential temperature and equivalent potential temperature when measured at the upper part of the mixing layer height. The mixing depth was formed at maximum 1896m above the ground, and in the night time, the inversion layer was formed by radiational cooling and cold mountain wind.

Optimum Management of Greenhouse Environment by the Shading Coat and Two-fluid Fogging System in Summer Season (차광제와 이류체 포그시스템을 이용한 고온기 시설내 환경관리)

  • Kim, Sung Eun;Lee, Jae Eun;Lee, Sang Don;Kim, Hak Sun;Chun, Hee;Jeong, Woo Ri;Lee, Moon Haeng;Kim, Young Shik
    • Journal of Bio-Environment Control
    • /
    • v.24 no.1
    • /
    • pp.34-38
    • /
    • 2015
  • This research was conducted to establish efficient methods to overcome high temperature and low humidity with light selective shading agent and two-fluid fogging system in greenhouses in hot season. There were four experimental treatments; not treated (Non), fogging by two-fluid fogging system (Fog), spraying onto the greenhouse surface with shading coating agent (Coat), and using fogging and coating together (F&C). The amount of solar radiation entered into the greenhouses was higher in Non, and then Fog, Coat, and F&C in descending order. Fog was more efficient to lower the air temperature and also raise relative humidity than Coat treatment. The crop temperature was about $6^{\circ}C$ higher in Control than the other treatments. F&C revealed as the most efficient method to control the environment inside the greenhouse, but fogging system seemed to be more economic. In stand-alone greenhouses spraying coating agent may be the appropriate choice because of their structural limitations, mainly eave height.

Seasonal Variability of Thermal Structure and Heat Flux in the Juam Reservoir (주암호의 계절별 수온 구조와 열수지 변화)

  • Sun, Youn-Jong;Cho, Cheol;Kim, Byong-Chun;Huh, In-Aa;Yoon, Jun-Heon;Chang, Nam-Ik;Cha, Sung-Sik;Cho, Yang-Ki
    • Korean Journal of Ecology and Environment
    • /
    • v.36 no.3 s.104
    • /
    • pp.277-285
    • /
    • 2003
  • Temperature profiles were observed to understand seasonal variation of thermal structures in the Juam reservoir from March 2000 to May 2001. Heat flux which affects thermal structures was calculated by observed water temperature and meteorological data. Temperature became homogeneous vertically by convection due to the surface cooling in winter. Maximum heat loss through the surface (109.45W/$m^2$) occurred in December. There was a horizontal gradient of water temperature in winter. The temperature was $3^{\circ}C$ at upstream and $5^{\circ}C$ near the dam. The surface temperature increased by the increase of solar radiation in spring and summer. Maximum heat gained through the surface was 101.95 W/$m^2$ in July. Maximum surface temperature was $29^{\circ}C$ in August, whereas the bottom water was $7^{\circ}C.$ Surface mixed layer became thicker and its temperature decreased by surface heat loss in fall and winter.

Analysis of the Climate inside Multi-span Plastic Greenhouses under Different Shade Strategies and Wind Regimes

  • He, Keshi;Chen, Dayue;Sun, Lijuan;Huang, Zhenyu;Liu, Zhenglu
    • Horticultural Science & Technology
    • /
    • v.32 no.4
    • /
    • pp.473-483
    • /
    • 2014
  • In this work, the effects of shade combination, shade height and wind regime on greenhouse climate were quantified. A two-dimensional (2-D) computational fluid dynamics (CFD) model was developed based on an 11-span plastic greenhouse in eastern China for wind almost normal to the greenhouse orientation. The model was first validated with air temperature profiles measured in a compartmentalized greenhouse cultivated with mature lettuce (Lactuca sativa L., 'Yang Shan'). Next, the model was employed to investigate the effect of shade combinations on greenhouse microclimate patterns. Simulations showed similar airflow patterns in the greenhouse under different shade combinations. The temperature pattern was a consequence of convection and radiation transfer and was not significantly influenced by shade combination. The use of shade screens reduced air velocity by $0.02-0.20m{\cdot}s^{-1}$, lowered air temperature by $0.2-0.8^{\circ}C$ and raised the humidity level by 0.9-2.0% in the greenhouse. Moreover, it improved the interior climate homogeneity. The assessment of shade performance revealed that the external shade had good cooling and homogeneity performance and thus can be recommended. Furthermore, the effects of external shade height and wind regime on greenhouse climate parameters showed that external shade screens are suitable for installation within 1 m above roof level. They also demonstrated that, under external shade conditions, greenhouse temperature was reduced relative to unshaded conditions by $1.3^{\circ}C$ under a wind speed of $0.5m{\cdot}s^{-1}$, whereas it was reduced by merely $0.5^{\circ}C$ under a wind speed of $2.0m{\cdot}s^{-1}$. Therefore, external shading is more useful during periods of low wind speed.