• Title/Summary/Keyword: Solar Chamber

Search Result 92, Processing Time 0.029 seconds

Growth of ZnTe Thin Films by Oxygen-plasma Assisted Pulsed Laser Deposition

  • Pak, Sang-Woo;Suh, Joo-Young;Lee, Dong-Uk;Kim, Eun-Kyu
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.185-185
    • /
    • 2011
  • ZnTe semiconductor is very attractive materials for optoelectronic devices in the visible green spectral region because of it has direct bandgap of 2.26 eV. The prototypes of ZnTe light emitting diodes (LEDs) have been reported [1], showing that their green emission peak closely matches the most sensitive region of the human eye. Another application to photovoltaics proved that ZnTe is useful for the production of high-efficiency multi-junction solar cells [2,3]. By using the pulse laser deposition system, ZnTe thin films were deposited on ZnO thin layer, which is grown on (0001) Al2O3substrates. To produce the plasma plume from an ablated ZnO and ZnTe target, a pulsed (10 Hz) YGA:Nd laser with energy density of 95 mJ/$cm^2$ and wavelength of 266 nm by a nonlinear fourth harmonic generator was used. The laser spot focused on the surface of the ZnO and ZnTe target by using an optical lens was approximately 1 mm2. The base pressure of the chamber was kept at a pressure around $10^{-6}$ Torr by using a turbo molecular pump. The oxygen gas flow was controlled around 3 sccm by using a mass flow controller system. During the ZnTe deposition, the substrate temperature was $400^{\circ}C$ and the ambient gas pressure was $10^{-2}$ Torr. The structural properties of the samples were analyzed by XRD measurement. The optical properties were investigated by using the photoluminescence spectra obtained with a 325 nm wavelength He-Cd laser. The film surface and carrier concentration were analyzed by an atomic force microscope and Hall measurement system.

  • PDF

The Evaluation of Thermal Performance of Vacuum Glazing by Composition and the Pillar Arrangement through Test Method of Thermal Resistance (단열성 시험 방법을 통한 진공유리의 구성 및 필러 배치에 따른 열 성능 평가)

  • Cho, Soo;Kim, Seok-Hyun;Eom, Jae-Yong
    • Journal of the Korean Solar Energy Society
    • /
    • v.35 no.1
    • /
    • pp.61-68
    • /
    • 2015
  • The advanced counties effort to the supplement of the zero energy buildings for the global building energy saving. In the middle of the development of passive technology, the government has to effort to the energy saving of buildings by enhanced performance of the window thermal insulation. By the method of enhanced performance of window thermal insulation, the use of vacuum double glazing saves the energy consumption in building. This glazing has low U-value(heat transmission coefficient) than normal double glazing. The vacuum glazing enhanced thermal insulation performance by vacuum space of between the glass and glass. For this vacuum glazing, pillar maintain the space between glass and glass. But this structure cause the raising the heat transmission coefficient in pillar approaching glass. This study confirmed the U-value by the test method of thermal resistance for windows and doors. Also this study confirmed the variation of heat transmission coefficient by the structure of vacuum glazing. And this study measured the surface temperature of the vacuum glazing about pillar approaching glass and vacuum space in cool chamber and hot box. That result, this study confirmed U-value of $0.422W/m^2{\cdot}K$ of vacuum glazing. Also this study confirmed U-value of $0.300{\sim}0.422W/m^2{\cdot}K$ by various the structure of vacuum glazing. And this study confirmed the heat flow in pillar approaching glass.

Climate Influences of Galactic Cosmic Rays (GCR): Review and Implications for Research Policy (우주기원의 고에너지 입자가 기후에 미치는 영향: 연구 현황과 정책적 시사점)

  • Kim, Jiyoung;Jang, Kun-Il
    • Atmosphere
    • /
    • v.27 no.4
    • /
    • pp.499-509
    • /
    • 2017
  • Possible links among cosmic ray, cloud, and climate have scientific uncertainties. The reputed topics have been highly controversial during several decades. A link between the atmospheric ionization by galactic cosmic rays (GCR), which is modulated by solar activities, and global cloud cover was firstly proposed in 1997. Some researchers suggested that the GCR can stimulate the formation of cloud condensation nuclei (CCN) in the atmosphere, and then the higher CCN concentrations may lead to an increase of cloud cover, resulting in a cooling of the Earth's climate, and vise versa. The CLOUD (Cosmic leaving outdoor droplets) experiment was designed to study the effect of GCR on the formation of atmospheric aerosols and clouds under precisely controlled laboratory conditions. A state-of-the-art chamber experiment has greatly advanced our scientific understanding of the aerosol formation in early stage and its nucleation processes if the GCR effect is considered or not. Many studies on the climate-GCR (or space weather) connection including the CLOUD experiment have been carried out during the several decades. Although it may not be easy to clarify the physical connection, the recent scientific approaches such as the laboratory experiments or modeling studies give some implications that the research definitively contributed to reduce the scientific uncertainties of natural and anthropogenic aerosol radiative forcing as well as to better understand the formation processes of fine particulate matters as an important parameter of air quality forecast.

Fast and Low Temperature Deposition of Polycrystalline Silicon Films by Hot Wire CVD (Hot Wire CVD를 이용한 다결정 Si 박막의 고속 저온 증착)

  • Lee, Jeong-Chul;Kang, Ki-Whan;Kim, Seok-Ki;Yoon, Kyung-Hoon;Song, Jin-Soo;Park, I-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2001.07c
    • /
    • pp.1427-1429
    • /
    • 2001
  • Polycrystalline silicon(poly-Si) films are deposited on low temperature glass substrate by Hot-Wire CVD(HWCVD). The structural properties of the poly-Si films are strongly dependent on the wire temperature($T_w$). The films deposited at high $T_w$ of 2000$^{\circ}C$ have superior crystalline properties; average lateral grain sizes are larger than $1{\mu}m$ and there at·e no vertical grain boundaries. The surface of the high $T_w$ samples are naturally textured like pyramid shape. These large grain size and textured surface are believed to give high current density when applied to solar cells. However, the poly-si films are structurally porous and contains high defect density, by which high concentration of C and O resulted within the films by air-penetration after removed from chamber.

  • PDF

Thermal performance evaluation of Temperable Low-e glass window through Heating Energy consumption Analysis (난방에너지 사용량 분석을 통한 후강화 로이유리 창호의 단열성능 평가)

  • Jang, Cheol-Yong;Kim, Jeong-Gook;Ahn, Byung-Lip;Kim, Jun-Sup;Haan, Chan-Hoon
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.200-205
    • /
    • 2012
  • In the high oil price age, intensification of energy efficiency promotion in the building sector is required. Windows are dominating in large percent of whole building loads, and are regarding as the primary target of energy efficiency. In this study, in order to reduce heat loss of buildings, we investigate the thermal performance properties of Temperable Low-e glazing coated Ag membrane that has high electrical conductivity. The Temperable Low-e glazing windows has high insulation and shading properties, and it has strength that can supply various product which consumers want. In order to evaluate thermal performance of temperable windows, we install single low-e windows and double low-e windows in the experimental chamber and analysis the comparison heating energy consumption between single and double Low-e glazing windows. performance evaluation was conducted.

  • PDF

Quantifying rice spikelet sterility on Vietnamese cultivars (Oryza sativa L.) under high temperature and shading condition

  • Tran, Loc Thuy;Shaitoh, Kuniyuki
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.43-43
    • /
    • 2017
  • During grain filling period, rice is affected by many environmental factors; including temperature, water, radiation and soil nutrition condition. In future climate, greater shading and heat tolerance will be required in rice. In this study, the effect of shading and high temperature on spikelet sterility was conducted on fourteen Vietnamese cultivars. Field experiments were studied in 2015 and 2016 to evaluate the response of Vietnamese cultivars under high temperature during grain filling stage. The high temperature and shading were applied by closing two sides of growth chamber and covered by a black cloth (50% reduced solar radiation) under the field condition after the first cultivar heading. The sterility increased significantly under high temperature and shading. The highest percentage sterile spiketlets was observed in 'Jasmine 85' (71.7%) under shading and in 'OM4900' (53.4%) under high temperature in 2015 and 2016, respectively. Among the treatments, the percentage of sterile spekelets in Vietnamese cultivars under shading was highest which was 54.9% and 41.8% in 2015 and 2016, respectively. Yield components reduced significantly in both of shading and high temperature. Corresponding with significantly decrease in yield components, the yield in high temperature and shading decreased strongly in both 2015 and 2016.

  • PDF

Study on Flow Characteristics in an Augmentation Channel of a Direct Drive Turbine for Wave Energy Conversion Using CFD

  • Prasad, Deepak;Kim, Chang-Goo;Choi, Young-Do;Lee, Young-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.594-599
    • /
    • 2009
  • Recent developments such as concern over global warming, depletion of fossil fuels and increase in energy demands by the increasing world population has eventually lead to mass production of electricity using renewable sources. Apart from wind and solar, ocean holds tremendous amount of untapped energy in forms such as geothermal vents, tides and waves. The current study looks at generating power using waves and the focus is on the primary energy conversion (first stage conversion) of incoming waves for different models. Observation of flow characteristics and the velocity in the augmentation channel as well as the front guide nozzle are presented in the paper. A numerical wave tank was used to simulate the waves and after obtaining the desired wave properties; the augmentation channel plus the front guide nozzle and rear chamber were integrated to the numerical wave tank. The waves in the numerical wave tank were generated by a piston type wave maker which was located at the wave tank inlet. The inlet which was modeled as a plate wall moved sinusoidally with the general function, x=asin$\omega$t The augmentation channel consisted of a front nozzle, rear nozzle and an internal fluid region representing the turbine housing. The analysis was performed using the commercial CFD code ANSYS-CFX.

  • PDF

A Study on the Comparison to Source Profile of the Major Terpenes from Pine Tree and Korean Pine Tree (소나무와 잣나무에서 배출되는 주요 테르펜의 배출특성에 관한 비교연구)

  • 지동영;김소영;한진석
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.18 no.6
    • /
    • pp.515-525
    • /
    • 2002
  • A field study was conducted to estimate the emission rate of biogenic volatile organic compounds (BVOCs) from pine trees. In addition, the influences of meteological variables on their distribution characteristics have been investigated. A vegetation enclosure chamber was designed and constructed of Tedlar bag and acril. Sorbent tubes made up of Tenax TA and Carbotrap were used to collect biogenic VOCs emitted from each individual tree. Analysis of BVOCs was performed using a GC-FID system. The fundamental analytical parameters including linearity, retention time, recovery efficiency, and breakthrough volume were examined and verified for the determination of monoterpene emission rates. Total average concentration of each component is found to be $\alpha$-pinene (16.5), $\beta$-pinene (4.61) from pine trees, and $\alpha$-pinene (42.4), $\beta$-pinene (18.7 ng(gdw)$^{-1}$ hr$^{-1}$ ) from Korean pine trees. On the basis of our study, $\alpha$-pinene was found to be the major monoterpene emitted from both pine and Korean pine trees which were accompanied by $\beta$-pinene, camphene, and limonene. In ambient air, variable monoterpene compositions of emissions from pine trees were similar to Korean pine trees. Emission rates of monoterpene from each tree were found to depend on such parameters as temperature and solar radiation.

A Study on Thermal performance as Form of Steel stud by Using Thermal Video Camera (열화상 카메라를 이용한 건식벽체의 스틸스터드 형상에 따른 열성능 비교연구)

  • Jang, Cheol-Yong;Um, Eun-Jung;Lee, Na-Eun
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.11a
    • /
    • pp.236-240
    • /
    • 2009
  • Dry wall using steel stud has the advantage of possibility to install various building, so it used to many buildings inside and outside of the country very rapidly. Though Light gauge steel framed housing offers many advantages to the consumer and the builder, the use of steel studs in wall system cause thermal problems such as thermal performance and pattern staing on walls. The present study has been conducted to observe effect of stud by the shape, and two kind of stud is made for this test to compare thermal performance. The test was conducted by setting those stud on the chamber and heating them. As the results of test and photograping by using TVS, there was temperature gap of each stud, and surface temperature of each section was appeared differently due to shape of stud delaying thermal bridge.

  • PDF

A Study on the Acoustic Vibration Test of the COMS (통신해양기상위성의 음향진동시험에 관한 연구)

  • Lee, Ho-Hyung
    • Journal of Satellite, Information and Communications
    • /
    • v.5 no.1
    • /
    • pp.69-74
    • /
    • 2010
  • As a part of development process of the COMS, an acoustic vibration test was performed in order to verify that the COMS is safe from the acoustic loads coming from the Ariane-5ECA launch vehicle when it is launched. In this paper, the acoustic vibration test preparation which was performed during the development of the COMS is explained, and through the evaluation of the test results, it was verified whether the COMS is safe from the acoustic load that the COMS will experience during the launch. Through detail evaluation of the acoustic loads on the solar array, Ka band communication payload antenna and feed, GOCI(Geo-Stationary Ocean Color Imager), MI(Meteorological Imager), it was confirmed that the COMS is safe from the acoustic loads from launch vehicle.