• Title/Summary/Keyword: Solar Cell charging

Search Result 44, Processing Time 0.024 seconds

Characteristic Analysis of HTS Magnet Charging System Combined with PV System Using MPPT Control (MPPT제어를 적용한 태양광발전 연계형 고온초전도마그넷 충전장치 특성 해석)

  • Kim, Dae-Wook;Yoon, Yong-Soo;Chung, Yoon-Do;Jo, Hyun-Chul;Kim, Ho-Min;Kim, Tae-Jung;Oh, Jae-Gi;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.14 no.1
    • /
    • pp.8-13
    • /
    • 2012
  • We already fabricated a proto-type HTS charging system with photovoltaic (PV) system and obtained design parameters for DC converter and HTS charging system. In order to develop the real scale charging system efficiently, we suggested a maximum power point tracking (MPPT) controller using a perturb and observe (P&O) MPPT algorithm for PV system. In this paper, we designed and simulated the MPPT controller for the real scale HTS charging system. As well as, the PV module has been analyzed by solving solar cell equivalent equations. The simulated and theoretical results presented here are being considered the next study which addresses the design and fabrication parameters.

Design on Algorithm of Power Control Unit for Charging Satellite Battery (위성 배터리 충전을 위한 전력제어유닛의 알고리즘 설계)

  • Park, JeongEon;Lee, Byoung-Hee
    • Journal of Satellite, Information and Communications
    • /
    • v.12 no.4
    • /
    • pp.95-99
    • /
    • 2017
  • The lifetime of a battery that supplies all the power required by a satellite in the eclipse is directly related to the lifetime of the satellite. Because the lifetime of the battery is influenced by the charging method of the battery, the power control unit that controls the charging of the battery should be designed in consideration of battery life. The battery charging is performed by controlling the charge current in the power control unit generated from the solar cell in the daytime. In order to prevent overcharge of the battery and for considering frequency of eclipse in each season, parameters related battery charging should be designed differently according to the season and to prevent over-current charging and over-voltage charging during charging, charge current is controlled by monitoring battery charge / discharge status, charge current amount, battery voltage, battery capacity, battery temperature and battery cell voltage. In satellite, tapering method is used to control charge current by reflecting each condition. In this paper, design battery charging algorithm of satellite power control unit using tapering charging method. convert the designed algorithm into a code that can be uploaded to satellites and verify the operation through testing in the established satellite environment.

Studies of Electric Double Layer Capacitors Used For a Storage Battery of Dye Sensitized Solar Cell Energy

  • Kim Hee-Je;Jeon Jin-An;Sung Youl-Moon;Yun Mun-Soo;Choi Jin-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.1 no.2
    • /
    • pp.251-256
    • /
    • 2006
  • To design the effective usage of electric double layer capacitors (EDLCs) used for a storage device of dye sensitized solar cell (DSC) energy, we first investigated the accumulation state of electrical charges and the charge behavior in the EDLCs. Based on the results, the voltage characteristics of EDLCs connected to DSC energy were evaluated. The results showed that the charge accumulation region concentrated on the central part of the carbonaceous electrode in EDLCs and the required times for charging and discharging were almost the same.

Studies of electric double layer capacitors used for a storage battery of dye sensitized solar cell energy (염료감응형 태양전지의 축전지로 사용되는 전기이중층콘덴서에 대한 연구)

  • Choi, Jin-Young;Lee, Im-Geun;Hong, Ji-Tae;Kim, Hee-Je
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.11a
    • /
    • pp.673-676
    • /
    • 2005
  • To design the effective usage of electric double layer capacitors (EDLCs) used for a storage device of dye sensitized solar cell(DSC) energy, we first investigated the accumulation state of electrical charges and the charge behavior in the EDLCs. Based on the results. the voltage characteristics of EDLCs connected to DSC energy were evaluated. The results showed that the charge accumulation region concentrated on central part of the carbonaceous electrode in EDLCs and the required times for charging and discharging were almost the same.

  • PDF

The PV MPPT & Charge and Discharge Algorithm for the Battery Included Solar Cell Applications (배터리 내장형 초소형 태양광 장치용 PV MPPT 및 충방전 제어 알고리즘)

  • Kim, Seung-Min;Park, Bong-Hee;Choi, Ju-Yeop;Choy, Ick;Lee, Sang-Chul;Lae, Dong-Ha
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.5
    • /
    • pp.69-75
    • /
    • 2013
  • To increase the efficiency of the photovoltaic, almost photovoltaic appliances are controlled by Maximum Power Point Tracking(MPPT). Existing most of the PV MPPT techniques have used power which multiplies sensed output current and voltage of the solar cell. However, these algorithms are unnecessarily complicated and too expensive for small and compact system. The other hand, the proposed MPPT technique is only one sensing of the MPPT converter's output current, so there is no need to insert another sensors of battery side. Therefore, this algorithm is simpler compared to the traditional approach and is suitable for low power solar system. Further, the novel proper charge/discharge algorithm for the battery with PV MPPT is developed. In this algorithm, there is CC battery charge mode and load discharge mode of the PV cell & battery dual. Also we design current control to regulate allowable current during the battery charging. The proposed algorithm will be applicable to battery included solar cell applications like solar lantern and solar remote control car. Finally, the proposed method has been verified with computer simulation.

High efficiency photovoltaic DC-DC charger possible to use the buck and boost combination mode (승압 강압 콤비네이션 모드가 가능한 고효율 태양광 충전용 DC-DC 컨버터)

  • Lee, Sang-Hun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.2
    • /
    • pp.97-104
    • /
    • 2017
  • In the present industrial field, the demand for the development of the solar power source device and the charging device for the solar cell is gradually increasing. The solar charger is largely divided into a DC-DC converter that converts the voltage generated from the sunlight to a charging voltage, and a battery and a charger that are charged with an actual battery. The conventional charger topology is used either as a Buck converter or a Boost converter alone, which has the disadvantage that the battery can not always be charged to the desired maximum power as input and output conditions change. Although studies using a topology capable of boosting and stepping have been carried out, Buck-Boost converters or Sepic converters with relatively low efficiency have been used. In this paper, we propose a new Buck Boost combination power converter topology structure that can use Buck converter and Boost converter at the same time to improve inductor current ripple and power converter efficiency caused by wide voltage control range like solar charger.

A Design of the Solar Tracker for LED Streetlight in Using Solar Cell (태양전지를 이용한 LED 가로등의 태양광 추적 장치 설계)

  • Lee, Ok-Jae
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.27 no.12
    • /
    • pp.1-9
    • /
    • 2013
  • A standalone LED lighting system in using solar energy has been used usually less than 70W of lighting power because of a troublesome installation and maintenance. In this system, as more and more LED lighting power increases, the capacity of photovoltaic panel does proportionally, and to improve the charging efficiency of solar energy, MPPT(Maximum Power Point Tracking) techniques is used frequently, but the solar tracker is not. In this paper, a solar tracker which traces the light of the sun in varying hour to hour is studied to apply to the standalone LED lighting system. This solar tracker consists of twin axis for tracing the azimuth and altitude respectively, and it has a robust structure with safe mode to stand a strong wind. As a result of analysis, generating efficiency of the traced type has improved on the fixed one 28.84% on average.

A Study on Quadcopter Consisting of Dual Li-Po Battery Charging by Solar Cell in the Engineering Education Completed a Senier Project Work at the University (공학교육 이수체계에서 대학 졸업 작품용 이중 Li-Po 전원 사용 태양전지 충전 쿼드콥터 구성에 관한 연구)

  • Yoon, Seong-Geun;Kim, Kyung-Bin;Chang, Eun-Young
    • Journal of Practical Engineering Education
    • /
    • v.8 no.1
    • /
    • pp.9-14
    • /
    • 2016
  • Depending on the college graduation project and graduation thesis regulations for the certification and graduation requirements, the quadcopter acting as a Li-Po battery that charges by solar energy are proposed a design method and improvements in theory. Quadcopter posture is balanced and confirmed by the position sensor, through a PID (Proportional Integral Differential) control. Battery switching circuit is composed of two Li-Po battery. Driving the quadcopter as one battery, and does not use other battery is charged by solar energy. A battery switching circuit is fabricated in a manner that uses two types of relays. Even if completely not charged to the battery is being driven a certain switch by the battery charging voltage from time to time, it proposes a method for increasing the endurance time and range.

Development of LED Auxiliary Power System for Ship using DSSC (염료감응 태양전지를 이용한 선박용 LED등의 보조 전원 개발)

  • Lee, Jin;Yang, Jae-Chang;Kim, Sang-Ki;So, Soon-Youl
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.9
    • /
    • pp.1312-1316
    • /
    • 2014
  • The color and the installation position of the LED lamp for night voyage of the ship are changed by the purpose of it. The power dissipation occurs because a navigation light is on and off or continuously on. In addition, in case that the light is produced by operating generator in the ship, it's very inefficient except that it's on a voyage. Therefore in this dissertation, we construct auxiliary power system for the LED lamp of the ship, producing and developing a module, a panel, and a charging system using Dye-sensitize Solar Cell.

The Properties of Boron-doped Zinc Oxide Film Deposited according to Oxygen Flow Rate

  • Kim, Dong-Hae;Son, Chan-Hee;Yun, Myoung-Soo;Lee, Jin-Young;Jo, Tae-Hoon;Seo, Il-Won;Jo, I-Hyun;Roh, Jun-Hyung;Choi, Eun-Ha;Uhm, Han-Sup;Kwon, Gi-Chung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.358-358
    • /
    • 2012
  • The application of BZO (Boron-doped Zinc Oxide) films use as the TCO(Transparent Conductive Oxide) material for display and solar cell industries, where the conductivity of the BZO films plays a critical role for improvement of cell performance. Thin BZO films are deposited on glass substrates by using RF sputter system. Then charging flow rates of O2 gas from zero to 10 sccm, thereby controlling the impurity concentration of BZO. BZO deposited on soda lime glass and RF power was 300 W, frequency was 13.56 MHz, and working pressure was $5.0{\times}10-6$ Torr. The Substrate and glass between distance 200 mm. We measured resistivity, conductivity, mobility by hall measurement system. Optical properties measured by photo voltaic device analysis system. We measured surface build according to oxygen flow rate from XPS (X-ray Photoelectron Spectroscopy) system. The profile of the energy distribution of the electrons emitted from BZO films by the Auger neutralization is measured and rescaled so that Auger self-convolution arises, revealing the detail structure of the valence band. It may be observed coefficient ${\gamma}$ of the secondary electron emission from BZO by using ${\gamma}$-FIB (Gamma-Focused Ion Beam) system. We observed the change in electrical conductivity by correlation of the valence band structure. Therefore one of the key issues in BZO films may be the valence band that detail structure dominates performance of solar cell devices. Demonstrating the secondary electron emission by the Auger neutralization of ions is useful for the determination of the characteristics of BZO films for solar cell and display developments.

  • PDF