• Title/Summary/Keyword: Solar Cell Module

Search Result 343, Processing Time 0.022 seconds

The Concentrating Photovoltaic System using a Solar Tracker (태양위치 추적 장치를 이용한 집광형 태양광 발전시스템)

  • Yoo, Yeong-tae;Na, Seung-kwon
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.4
    • /
    • pp.377-385
    • /
    • 2017
  • The solar cell need the characteristic interpreting because the solar cell changes greatly according to the isolation, temperature and load in the photovoltaic development. Moreover, to get many energy in photovoltaic development need the position tracking of the sun according to the environment change. Also, The solar cells should be operated at the maximum power point. In this paper, I used microprocessor and sensor and designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and composed an power conversion system with boost converter and voltage source inverter. Used the constant voltage control method for maximum power point tracking in boost converter control and, used the SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control. The result was less then 5% when compared the catalogue of solar cell module and the simulation through a mathematics modelling. The boost rate of boost converter was similar to 167 % with the simulation.

Research Plan to improve Power Generation Efficiency of Photovoltaic Units using Photovoltaic Module Cooling System (태양광모듈 냉각장치를 이용한 태양광발전장치 발전효율 향상을 위한 연구방안)

  • Yoon, Yongho
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.1
    • /
    • pp.199-204
    • /
    • 2020
  • In case of the silicon solar panel being used in Korea, the production specification is designed to give maximum output at the limit of -0.5 to 0.05℃, so the output of 0.45~0.55% decreases when the temperature rises by 1℃. As a result, the photovoltaic power generation is reduced according to the surface temperature rise of the photovoltaic module due to the characteristics of the solar cell. The decrease in output reduces the efficiency of photovoltaic power generation, and if the efficiency decreases, the result is that the profit of electricity sales according to the amount of photovoltaic power generation decreases. Therefore, this paper proposes a method of spraying cooling air to the lower (or surrounding) of the photovoltaic module when it is identified above the set temperature by the temperature detection sensor. In addition, the amount of power generated is increased by utilizing the lost solar energy, and by applying cooling function through cooling air, the power generation can be further increased.

Fabrication of $CuInSe_2$ thin films Solar Cell by Patterning Process (Patterning에 의한 $CuInSe_2$ 박막 태양전지 제조)

  • Kang, Gi-Hwan;Lee, Jeong-Churl;Kim, Seok-Ki;Yoon, Kyung-Hoon;Park, I-Jun;Song, Jin-Soo
    • Proceedings of the KIEE Conference
    • /
    • 1999.07d
    • /
    • pp.1895-1897
    • /
    • 1999
  • This paper describes the fabrication and performance characterizations of the CIGS$(CuInGaSe_2)$ solar cells and its prototype module. The CIGS cell and module were fabricated on the sodalime glass$(5\times5cm^2)$ by the well known three stage co-evaporation and series connection followed by patterning process. respectively. The developed minimodule with active area of $14.7cm^2$ showed 6.0% solar efficiency($V_{oc}$=3.2V, $I_{sc}$=79.8mA, FF=34.6%) in AM 1.5 condition.

  • PDF

Fabrication and Evaluation of Low Concentrator Photovoltaic Modules with Aluminium Reflectors (반사판을 이용한 저집속 집광형 태양광 모듈 제작 및 평가)

  • Jeong, Hye-Jeong;Lee, Young-Woo;Ju, Seong-Min;Lee, Ho-Jae;Boo, Seong-Jae
    • New & Renewable Energy
    • /
    • v.4 no.4
    • /
    • pp.17-22
    • /
    • 2008
  • A low concentrating (< 5X) photovoltaic module with aluminum reflectors is fabricated and evaluated which is designed to reduce the affection of the high temperature to the solar cell modules preventing the efficiency lowering. As results, the output power is increased of 1.97X from the concentrating photovoltaic module which is designed with the concentrating ratio of 2.25X and to control the module temperature cooling the module by air circulation. Also, the effect of the concentrating module with aluminum reflectors on the conventional PV module is investigated at the field. The result shows the increase of the output power more than about 20% and the improvement of the module efficiency of 1.4X in spite of the increase of average module temperature.

  • PDF

A study on a power plant using Dye-sensitized solar cells in low light environments (저조도 환경에서의 염료감응형 태양전지를 활용한 발전소자에 관한 연구)

  • Kim, Sun-Geum;Baek, Sung-June
    • Journal of IKEEE
    • /
    • v.25 no.2
    • /
    • pp.267-272
    • /
    • 2021
  • Recently, attention has been focused on renewable energy and carbon neutrality to resolve fossil energy depletion and environmental problems. In addition, high-rise urban buildings and an increase in building energy are rapidly increasing. There are many restrictions on installing solar power in urban areas. In addition, as buildings become taller, a lot of low-light environments in which shade is formed occur. Therefore, in this study, we intend to develop a power plant capable of generating electric power in an outdoor low-light environment and indoor lighting environment. The power plant in a low-light environment used a dye-sensitized solar cell. A unit cell and a 20cm×20cm module were manufactured, and the electrical characteristics of the power plant were measured using light sources of LED, halogen lamp, and 3-wavelength lamp. The photoelectric conversion efficiency of the unit cell was 17.2%, 1.28%, 19,2% for each LED, halogen lamp, and 3-wavelength lamp, and the photoelectric conversion efficiency of the 20cm×20cm module was 10.9%, 8.7%, and 11.8%, respectively. In addition, the maximum power value of the module was 13.1mW, 15.7 mW, and 14.2 mW for each light source, respectively, confirming the possibility of power generation in a low-light environment

A Study on the Relationship between Factors Affecting Soldering Characteristics and Efficiency of Half-cell Soldering Process with Multi-wires (Half-cell 기반 multi-wires 접합 공정에서 접합 특성에 영향을 주는 요인과 효율의 상관관계 연구)

  • Kim, Jae Hun;Son, Hyoung Jin;Kim, Sung Hyun
    • Current Photovoltaic Research
    • /
    • v.7 no.3
    • /
    • pp.65-70
    • /
    • 2019
  • As a demand of higher power photovoltaic modules, shingled, multi-busbar, half-cell, and bifacial techniques are developed. Multi-busbar module has advantage for large amount of light havesting. And, half-cell is high power module for reducing resistive losses and higher shade tolerance. Recently, researches on multi-busbar is focused on reliability according to adhesion and intermetallic compound between Sn-Pb solder and Ag electrode. And half-cell module is researched to comparing with full-sized cell module for structure difference. In this study, we investigated the factors affecting to efficiency and adhesion of multi-wires half-cell module according to wire thickness, solder thickness, and flux. The results of solar simulator and peel test was that peel strength and efficiency of soldered cell is not related. But samples with flux including high solid material showed high efficiency. The results of FE-SEM and EDX line scan on cross-section between wire and Ag electrode for different flux showed thickness of solder joint between wire and Ag electrode is increasing through solid material increasing. Flux including high solid material would affect to solder behavior on Ag electrode. Higher solid material occurred lower growth of IMC layer because solder permeate to sider of wire ribbon than Ag electrode. And it increased fill factor for high efficiency. In soldering process, amount of solid material in flux and solder thickness are the factor related with characteristic of soldered photovoltaic cell.

Simulation of Shingled String Characteristics Depending on Cell Strips Type for High Power Photovoltaic Modules (고출력 태양광 모듈을 위한 분할 셀 종류에 따른 슁글드 스트링 특성 시뮬레이션)

  • Park, Ji Su;Oh, Won Je;Lee, Jae Hyeong
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.1
    • /
    • pp.10-15
    • /
    • 2020
  • Recently, with the increase in the use of urban solar power, solar modules are required to produce high power in limited areas. In this report, we proposed the fabrication of a high-power photovoltaic module using shingles technology, and developed accurate string characteristic simulations based on circuit modeling. By comparing the resistance components between the interconnected cells and the cell strips, the ECA resistance was determined to be 0.003 Ω. Based on the equivalent circuit of the modeled shingled string, string simulation was performed according to the type of cell strip. As a result, it was determined that the cell efficiency of the 4-cell strip was the highest at 19.66%, but the efficiency of the string simulated with the 6-cell strip was the highest at 20.48% in the string unit.

Characteristics of Solar Cell by Thermal Shock test (열충격 시험을 통한 태양전지 특성)

  • Kang, Min-Soo;Jeon, Yu-Jae;Son, Seon-Ik;Kim, Do-Seok;Shin, Young-Eui
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2012.03a
    • /
    • pp.91-95
    • /
    • 2012
  • 본 연구에서는 열충격 시험을 통하여 Cell레벨에서의 효율저하 특성을 분석하였다. 열충격 시험은 PV모듈의 시험 규격인 KS C IEC-61215를 이용하여 보다 가혹한 조건인 $-40^{\circ}C$에서 $120^{\circ}C$의 조건으로 500사이클 수행하였다. I-V 측정을 통하여 효율을 분석한 결과, 열충격 시험 전 13.9%에서 열충격 시험 후 11.0%로 효율이 저하 됐으며, 감소율은 20.9% 나타났다.EL촬영을 통해 표면을 분석한 결과 Ribbon접합부 및 Gridfinger의 손상으로 확인 됐으며, 보다 정확한 효율 저하의 원인을 분석하기 위해 단면분석을 실시한 결과 표면손상으로 확인 되었던 위치의 Cell내부에서도 Crack을 확인 할 수 있었다. 또한 FF값을 분석한 결과 열충격 시험 전 72.3%에서 시험 후 62.0%로 11.8%의 감소율을 보였다. 따라서, 경년 시 나타나는 효율저하는 Cell자체의 소모전력 증가와 외부환경에 의한 표면 손상 및 Cell내부의 Crack에 기인하여 가속된다고 판단된다.

  • PDF

The Intrinsic Safety Evaluation of Solar Photovoltaic Cell (태양전지셀의 본질안전 방폭성능 평가)

  • Lee, Chun-Ha;Jee, Seung-Wook;Kim, Si-Kuk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.7
    • /
    • pp.49-54
    • /
    • 2011
  • Now the world will regulate the CO2 emission due to environmental issues. For an alternative plan photovoltaic system is watched. So, photovoltaic system is trend of big city and it is mandatory for renovation of construction. Oil & gas filling station existed in city is suitable to found the photovoltaic system. But the general photovoltaic system in oil & gas filling station is difficult to found because it is classified into hazardous area. This paper evaluates intrinsic safety evaluation of solar cell for making basic data to found for the photovoltaic system on hazardous area. The intrinsic safety characteristic is evaluated by short-circuit ignition test using IEC type spark ignition test apparatus and temperature rising test. The result of short-circuit ignition test, propane-air mixture gas is exploded on condition that 4 solar cells(9[V], 90[mA]) are connected serially under insolation 800[W/$m^2$]. So, if a larger solar module will be used at oil & gas filling station than we were tested, it needs explosion proof. As the result of rising temperature test, the temperature rising due to short circuit is not so much, but when the temperature rises due to radiant heat, it demands careful consideration for environmental influence.

A study on Photovoltaic System to Considers a Solar Position Tracker for Air Conditioner a Clinic room (병실 냉.난방장치용 태양 위치 추적기를 이용한 태양광 발전시스템에 관한 연구)

  • Hwang, Lark-Hoon;Na, Seung-Kwon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.6
    • /
    • pp.1355-1362
    • /
    • 2007
  • In this paper, these setting can be useful in the microprocessor and sensor that designed to improve the efficiency of the photovoltaic system the photovoltaic position tracker device, and compared the normal photovoltaic system of fixed form with the photovoltaic system of solar position tracked form. Moreover, this is compared the catalogue of solar cell module and the simulation through a mathematics modelling with the solar cell's characteristic interpreting and that is composed an power conversion system with boost converter and voltage source inverter. This device can be used to the constant voltage control method for maximum power point tracking in boost converter control. Experiment Results is shown that using a SPWM(Sinusoidal Pulse Width Modulation) control method in inverter control.

  • PDF