• Title/Summary/Keyword: Solanum tuberosum

Search Result 237, Processing Time 0.028 seconds

Expression of Low Temperature Regulated Gene H28 in Solanum tuberosum L.

  • Choi, Kyung-Hwa;Jeon, Jae-Heung;Kim, Hyun-Soon;Joung, Young-Hee;Joung, Hyouk;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.10 no.4
    • /
    • pp.300-304
    • /
    • 1997
  • Leaf dise explants of Solanum tuberosum cultivar. Desiree and Atlantic, were infected with a Agrobacterium MP90 strain containing chimeric gene construct, consisting of antibiotic and low temperature regulated gene (H28) for transformation. regenerated multiple shoots were selected on a medium containing kanamycin and carbenieillin after exposure to Agrobacterium. Both PCR analysis of NPT Ⅱ, H28 genes and northern blot analysis indicated that the genes coding for the enzyme were successfully integrated into the potato genome and could be expressed in potato plants.

  • PDF

Production of transgenic potato exhibiting enhanced resistance to fungal infections and herbicide applications

  • Khan, Raham Sher;Sjahril, Rinaldi;Nakamura, Ikuo;Mii, Masahiro
    • Plant Biotechnology Reports
    • /
    • v.2 no.1
    • /
    • pp.13-20
    • /
    • 2008
  • Potato (Solanum tuberosum L.), one of the most important food crops, is susceptible to a number of devastating fungal pathogens in addition to bacterial and other pathogens. Producing disease-resistant cultivars has been an effective and useful strategy to combat the attack of pathogens. Potato was transformed with Agrobacterium tumefaciens strain EHA101 harboring chitinase, (ChiC) isolated from Streptomyces griseus strain HUT 6037 and bialaphos resistance (bar) genes in a binary plasmid vector, pEKH1. Polymerase chain reaction (PCR) analysis revealed that the ChiC and bar genes are integrated into the genome of transgenic plants. Different insertion sites of the transgenes (one to six sites for ChiC and three to seven for bar) were indicated by Southern blot analysis of genomic DNA from the transgenic plants. Expression of the ChiC gene at the messenger RNA (mRNA) level was confirmed by Northern blot analysis and that of the bar gene by herbicide resistance assay. The results obviously confirmed that the ChiC and bar genes are successfully integrated and expressed into the genome, resulting in the production of bialaphos-resistant transgenic plants. Disease-resistance assay of the in vitro and greenhouse-grown transgenic plants demonstrated enhanced resistance against the fungal pathogen Alternaria solani (causal agent of early blight).

Expression of resveratrol synthase gene and accumulation of resveratrol in transgenic potatoes (Solanum tuberosum L.)

  • Yi, Jung Yoon;Seo, Hyo Won;Yun, Song Joong;Ok, HyunChoong;Park, YoungEun;Cho, Ji Hong;Cho, HyunMook
    • Korean Journal of Breeding Science
    • /
    • v.41 no.4
    • /
    • pp.385-390
    • /
    • 2009
  • A resveratrol synthase (RS) gene was isolated from peanut (Arachis hypogaea, L. cv. Jinpoong) plants. This gene was placed under the control of the cauliflower mosaic virus 35S promoter (CaMV35S) and introduced into two Korean varieties of potato (Solanum tuberosum L. cvs. Jasim and Jowon) plants by Agrobacterium-mediated gene transfer. Putative transformants were screened by PCR with primers designed from CaMV 35S promoter, NOS terminator and RS gene. Most of selected transgenic potato plants showed the amplification of expected fragments by PCR of genomic DNA with gene-specific primers, while they were absent in untransformed control plants. Expression of the resveratrol synthase gene was also examined by northern blot analysis. The transformants showed a band which was lacking in the control plant, confirming that the introduced gene is transcribed into mRNA in the transformants. The strength of the band, which reflected the level of mRNA expression, differed among the individual transformants. Among the transformants obtained, the highest trans-resveratrol content in the transgenic young leaves of purple-fleshed "Jashim" was $2.11{\mu}gg^{-1}$ fresh weight and that in the microtubers in vitro of purple fleshed "Jashim" was $8.31{\mu}gg^{-1}$ fresh weight. This amount of resveratrol may have a positive biological effect on human health.

Cover Crop Effects of Winter Rye (Secale cereale L.) on Soil Characteristics and Conservation in Potato (Solanum tuberosum L.) Slope Field (경사밭 감자(Solanum tuberosum L.) 재배 시 휴한기 호밀(Secale cereal L.) 재배에 따른 토양 특성 및 토양 보전 효과)

  • Bak, Gyeryeong;Lee, Jeong-Tae
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1015-1025
    • /
    • 2021
  • Our research work aimed to evaluate cover crop effects of winter rye on soil characteristics, soil conservation, and yield productivities on potato fields with 15% slope during a fallowed period. There were two controls of bared field without any cultivation and conventional potato cultivation without winter rye. Potato cultivation increased soil pH, organic matter, available phosphate, and exchangeable cation regardless of cover crop cultivation. Sub-soil, particularly, all components of soil chemical properties showed higher value in winter rye cultivation than conventional cultivation. Higher soil density was observed on cover crop cultivation than conventional cultivation resulting from root residues of the cover crop both topsoil and subsoil. Cover crop residues positively affected plant growth and reduced the amount of soil erosion by holding the soil. Although severe soil erosion was seen in conventional cultivation, winter rye cultivation declined soil erosion by 47% during the fallow period on potato slope fields. Distinct soil bacterial communities were detected among treatments and some OTU(Operational Taxonomic Unit)s showed significantly higher abundance in winter rye treatment. Total yield and commercial rate demonstrated no significant differences while higher tuber phosphate, K+, and Mg2+ contents were observed in winter rye cultivation.

Genetic Transformation of Microtuber Disk of Potato(Solanum Tuberosum) by Agrobacterium Tumefaciens (Agrobacterium tumefaciens에 의한 Microtuber 감자 (Solanum tuberosum) 절편(切片)의 유전적(遺傳的) 형질전환(形質轉換)에 관한 연구(硏究))

  • Lee, Young Bok;Seong, Bong Jae;Lee, Eun Gyoung;Lee, Ki Won;Choi, Kwan Sam
    • Korean Journal of Agricultural Science
    • /
    • v.20 no.2
    • /
    • pp.133-144
    • /
    • 1993
  • Calli were induced on microtuber disks of potato(S.tuberosum) infected with three binary vectors transconjugated with C58, A281 and LBA 4404 of Agrobacterium tumefaciens and pBI121. The frequency inducing callus was the highest by infection of C121 carrying pC58 and pBI121, and shoots were differentiated on the calli without any hormonal application. Transformed calli were selected by their resistance to kanamycin and identified by GUS activity. The frequency of callus formation by infection of binary vector strain was affected according to the hormonal application.

  • PDF

The Preference and Inhibitory Effect of Root Vegetables on β-Glucuronidase and Tryptophanase of Human Intestinal Bacteria (근채류의 기호도와 장내세균의 유해효소 억제효과)

  • Han, Myung Joo;Kim, Na Young
    • Korean journal of food and cookery science
    • /
    • v.15 no.6
    • /
    • pp.555-564
    • /
    • 1999
  • The objective of this study was to investigate the preference of root vegetables and the inhibitory effect of the vegetables on harmful enzymes of intestinal bacteria. Two hundred fifty respondents in Seoul area surveyed to obtain information from Sep. 30 to Oct. 30, 1998. Respondents preferred Inpuomoea batatas (sweet potato, 4.05), Solanum tuberosum(potato, 3.97), Allium cepa(onion, 3.68), Codonopsis lanceolata(3.64) and Raponus sativus(redish, 3.60). The growth of B. breve K-110 was effectively increased by adding 0.5% extract of Solanum tuberosum(139%), Codonopsis lamceolate(145%), Dioscorea japonica(164%), Colocisia antiquorum(144%) extract to the medium. B. breve K-100 for beneficial bacteria, and E. coli HGU-3 or Bacteroides JY-6 for harmful bacteria were used to determine the inhibitory effect of root vegetables on harmful intestinal enzymes after co-culturing harmful and beneficial bacteria. The extract of Solanum tuberosum, Codonopsis lanceolata, Dioscorea japonica (yam) and Colocisia antiquorum (taroes) showed inhibitory effect on ${\beta}$-glucuronidase and tryptophanase of intestinal bacteria. The macromolecules were isolated from Solanum tuberosum, Codonopsis lanceolata, Dioscorea japonica and Colocisia antiquorum by Sephadex G-100 column chromatography. By adding these isolated marcromolecules to the medium, the growth of B. breve K-100 were also increased and high inhibitory effects on the ${\beta}$-glucuronidase and tryptophanase were measured. These results suggested that the harmful enzymes of intestinal bacteria were inhibited by consuming Solanum tuberosum, Codonopsis lanceolata, Dioscorea japonica and Colocisia antiquorum. Therefore, they could prevent gastrointestinal diseases.

  • PDF

Comparison of the complete chloroplast genome sequence of Solanum stoloniferum with other Solanum species generates PCR-based markers specific for Solanum stoloniferum (엽록체 전장유전체 정보를 이용한 감자 야생종 Solanum stoloniferum 구별 분자 마커 개발)

  • Kim, Soojung;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.47 no.2
    • /
    • pp.131-140
    • /
    • 2020
  • Solanum stoloniferum, one of the wild tetraploid Solanum species belonging to the Solanaceae family, is an excellent resource for potato breeding owing to its resistance to several important pathogens. However, the sexual hybridization of S. stoloniferum with S. tuberosum (potato) is hampered due to the sexual incompatibility between the two species. To overcome this and introgress the various novel traits of S. stoloniferum in cultivated potatoes, cell fusion can be performed. The identification of the fusion products is crucial and can be achieved with the aid of molecular markers. In this study, the chloroplast genome sequence of S. stoloniferum was obtained by next-generation sequencing technology, and compared with that of six other Solanum species to identify S. stoloniferum-specific molecular markers. The length of the complete chloroplast genome of S. stoloniferum was found to be 155,567 bp. The structural organization of the chloroplast genome of S. stoloniferum was similar to that of the six other Solanum species studied. Phylogenetic analysis of S. stoloniferum with nine other Solanaceae family members revealed that S. stoloniferum was most closely related to S. berthaultii. Additional comparison of the complete chloroplast genome sequence of S. stoloniferum with that of five Solanum species revealed the presence of six InDels and 39 SNPs specific to S. stoloniferum. Based on these InDels and SNPs, four PCR-based markers were developed to differentiate S. stoloniferum from other Solanum species. These markers will facilitate the selection of fusion products and accelerate potato breeding using S. stoloniferum.

Potato breeding via protoplast fusion (원형질체 융합을 이용한 감자 육종)

  • Cho, Kwang-Soo;Park, Tae-Ho
    • Journal of Plant Biotechnology
    • /
    • v.41 no.2
    • /
    • pp.65-72
    • /
    • 2014
  • Plant cells from which the cell walls have been enzymatically or mechanically removed are called protoplasts. The protoplasts are theoretically totipotent and can be used as sources of somatic cell fusion in practical breeding programs. Wild Solanum species have often been used as sources of important agricultural traits including diverse disease resistance. However, they cannot often be directly applied to breeding programs due to their sexual incompatibility with S. tuberosum. Somatic hybridization via protoplast fusion is one of the ideal methods to overcome this limitation and to introgress certain traits into S. tuberosum. This technique has still widely been used in potato since the first fusion was reported in 1970s. Therefore, this review highlights general perspectives of protoplast fusion and discusses the application of protoplast fusion in potato breeding.

Differential Growth Response of Various Crop Species to Arbuscular Mycorrhizal Inoculation

  • Eo, Ju-Kyeong;Eom, Ahn-Heum
    • Mycobiology
    • /
    • v.37 no.1
    • /
    • pp.72-76
    • /
    • 2009
  • To investigate the growth response of various crop species to mycorrhizal inoculation, arbuscular mycorrhizal fungi were applied to Glycine max, Vigna angularis, Senna tora, Hordeum vulgare var. hexastichon. Zea mays, Sorghum bicolor, Allium tuberosum, Solanum melongena, and Capsicum annuum. The biomass of the inoculated crops was measured every two weeks for the 12-week growth period. By measuring biomass, we calculated the mycorrhizal responsiveness of the nine crop species. Among the nine crop species, four species showed a significant response to mycorrhizal inoculation. The shoot biomasses of V. angularis, C. annuum, A. tuberosum, and S. tora significantly increased with mycorrhizal inoculation.

Changes of Peroxidsse Isozyme Pattern and Formation of Cell Wall of Hairy Root Irlduced by Agrohacterium rhisogenes from Potato Tuber (감자(Solanum tuberosum. L) 괴경에 있어서 Agrobacterium rhizogenes에 의해 형질전환된 조직세포의 세포벽 형성과 peroxidase isozyme 양상의 변화)

  • 정현숙;김영희
    • KSBB Journal
    • /
    • v.6 no.1
    • /
    • pp.27-33
    • /
    • 1991
  • Hairy root induced by A. rhizogenes from potato tuber (Solanm tuberosum L.) synthesized the agropine and mannopine which were demonstrated with paper electrophoresis. And the starch contents in hairy root were increased gradually following the developmental stage. But protein contents were decreased. The activity of ${\beta}-glucan$ synthetase II(GSII) which is related to the cell wall biosynthesis was stimulated in hairy root on the developmental stage. And chloropromazine did not influence the activity of GS II while verapamil inhibited about 60% of the activity GS II. Therefore, these results showed $Ca^{2+}$ to be effective factor in the cell wall formation. Isozyme pattern of peroxidase was investigated in the callus and hairy root induced from potato tuber.

  • PDF