• Title/Summary/Keyword: Sol-precipitation

Search Result 66, Processing Time 0.031 seconds

Preparation of NASIglasses by Sol-Gel Process (솔-젤법에 의한 NASIglass의 제조)

  • 김희주;강은태;김종옥
    • Journal of the Korean Ceramic Society
    • /
    • v.32 no.12
    • /
    • pp.1357-1368
    • /
    • 1995
  • Nasigels of composition Na0.75Zr2PSi2O12 and Na3Zr2PSi2O12 have been synthesized by the sol-gel technique using metal alkoxide precursors. The monolithic dry gels of Na0.75Zr2PSi2O12 with no crack have been prepared by the control of the shrinkage rte, but gels of Na3Zr2PSi2O12 were impossible to prepare without cracking. The gels treated up to 80$0^{\circ}C$ led to the formtion of glass but the glasses were converted to the crystalline phases at above this temperature. Crystaline phases precipitated from the Na0.75Zr2PSi2O12 glass were NASICON-like phase, Na2Si2O5, and free Zirconia. Phase that precipitated from the Na3Zr2PSi2O12 was only rhombohedral NASICON. For Na0.75Zr2PSi2O12 gels, framework of PO4 tetrahedra and SiO4(PO4) tetrahedra formed at low temperature but changed to that of SiO4 and SiO4(PO4) tetrahedras as it were crystallized. In the case of Na3Zr2PSi2O12 gel, framework of isolated PO4 and SiO4 tetrahedras formed at low temperature but changed to SiO4(PO4) tetrahedra framework which usually formed in the NASICON crystal after crystallization at high temperature. The gels treated up to 80$0^{\circ}C$ contained the residual water. The ionic conduction was attributed to the motion of proton and Na+ ion at low (up to 150~20$0^{\circ}C$) and high temperatures, respectively. As the temperature of heat treatment increased, ionic conductivity gradaully increased with the extent of precipitation of crystalline phase.

  • PDF

Characteristics of Chaff Echoes Observed by X-band Dual Polarization Radar (X-밴드 이중편파레이더에서 관측된 채프에코의 특성)

  • Seo, Eun-Kyoung;Park, Sora;Nam, Kyung-Yeub;Heo, Sol-Ip
    • Journal of the Korean earth science society
    • /
    • v.34 no.1
    • /
    • pp.1-12
    • /
    • 2013
  • To effectively remove chaff echoes, which are often misidentified as precipitation echoes on weather radars, this study examines the relationship between the radar reflectivity and each of dual polarimetric parameters. The dual polarimetric parameters are collected only for the echo areas identified as chaff echoes on the NIMR X-band dual polarization radar. Overall, the polarimetric parameters (i.e., reflectivity, differential reflectivity, cross correlation coefficient, standard deviation of differential reflectivity and specific differential phase) for chaff echoes have a wider range of values than those for precipitation echoes and the chaff filaments tend to be horizontally oriented to radar beams. There appears to be a considerable overlap in the cross correlation coefficient range of chaff and precipitation echoes since some precipitation echoes have cross correlation coefficient lower than 0.8. Therefore, although the cross correlation coefficient is known to be a good variable in identifying and separating chaff echoes from precipitation echoes, it is suggested that additional care should be taken when using the cross correlation coefficient solely in removing chaff echoes.

Reliability Assessment of Temperature and Precipitation Seasonal Probability in Current Climate Prediction Systems (현 기후예측시스템에서의 기온과 강수 계절 확률 예측 신뢰도 평가)

  • Hyun, Yu-Kyung;Park, Jinkyung;Lee, Johan;Lim, Somin;Heo, Sol-Ip;Ham, Hyunjun;Lee, Sang-Min;Ji, Hee-Sook;Kim, Yoonjae
    • Atmosphere
    • /
    • v.30 no.2
    • /
    • pp.141-154
    • /
    • 2020
  • Seasonal forecast is growing in demand, as it provides valuable information for decision making and potential to reduce impact on weather events. This study examines how operational climate prediction systems can be reliable, producing the probability forecast in seasonal scale. A reliability diagram was used, which is a tool for the reliability by comparing probabilities with the corresponding observed frequency. It is proposed for a method grading scales of 1-5 based on the reliability diagram to quantify the reliability. Probabilities are derived from ensemble members using hindcast data. The analysis is focused on skill for 2 m temperature and precipitation from climate prediction systems in KMA, UKMO, and ECMWF, NCEP and JMA. Five categorizations are found depending on variables, seasons and regions. The probability forecast for 2 m temperature can be relied on while that for precipitation is reliable only in few regions. The probabilistic skill in KMA and UKMO is comparable with ECMWF, and the reliabilities tend to increase as the ensemble size and hindcast period increasing.

Optical and Electrical Properties with Various Post-Heating Temperatures in the Al-Doped ZnO Thin Films by Sol-Gel Process (졸-겔법에 의해 제조된 Al-Doped ZnO 박막의 후열처리 온도에 따른 전기 및 광학적 특성)

  • Ko, Seok-Bae;Choi, Moon-Sun;Ko, Hyungduk;Lee, Chung-Sun;Tai, Weon-Pil;Suh, Su-Jeong;Kim, Young-Sung
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.10 s.269
    • /
    • pp.742-748
    • /
    • 2004
  • Isopropanol of low boiling point was used as a solvent to prepare Al-doped ZnO(AZO) thin films. A homogeneous and stable sol was made from Zn acetate a solute whose mole concentration was 0.7mol/$\iota$ and Al chloride as a dopant. Al-doped ZnO thin films were prepared by sol-gel method as a function of post-heating temperature from 500 to $700^{\circ}C$ and the optical and electrical properties were investigated. The c-axis orientation along (002) plane was enhanced with the increasing of post-heating temperature and the surface morphology of the films showed a homogeneous and nano-sized microstructure. The optical transmittance of the films post-heated below $650^{\circ}C$ was over $86\%$, but decreased at $700^{\circ}C$. The electrical resistivity of the thin films decreased from 73 to 22 $\Omega$-cm as the post-heating temperature increased up to $650^{\circ}C$, but increased greatly to 580 $\Omega$-cm at $700^{\circ}C$. XPS analysis indicated that the deterioration of electrical and optical properties was attributed to the precipitation of $Al_2O_3$ phase on the surface of AZO thin film. This result suggests that the optimum post-heating temperature to improve electrical and optical properties is $600^{\circ}C$.

Selective Response of Dye Rotaxane to Metal Ions (금속 이온에 대한 염료 로택산의 선택적 반응성)

  • Park, Jong-S.
    • Proceedings of the Korean Society of Dyers and Finishers Conference
    • /
    • 2011.03a
    • /
    • pp.35-35
    • /
    • 2011
  • The design and preparation of novel dye rotaxanes have gained much interest recently, since such structure usually exhibits peculiar spectral and optical changes. In spite of the promising results to date, increasing pressure remains to develop novel supramolecular structures based on stimuli-responsive systems. This presentation covers the study of inclusion complexes of cyclodextrins and various chromophores, with an emphasis on our most recent outcome of anisotropic hydrogel. In this system, physical gelation prepared from simple mixture of CD and a azo dye is completed through specific host-guest interaction. The obtained hydrogel exhibits respective morphological transitions based on supramolecular assembly and dissociation, leading to either precipitation or a sol-to-gel transition. It can identify different classes of metal ions, and, among them, naked-eye differentiation of lead ion is possible due to the coordination-induced unthreading of dye molecules. Accompanying structural changes were verified by numerous characterization techniques, including 2D-ROESY, HR-MAS, UV-Visible absorption, small-angle X-ray scattering, and induced circular dichroism measurements. Such properties discussed here will find useful in analytical applications, such as metal ion sensing and removal applications.

  • PDF

Expression and purification of Soybean $\beta$-Conglycinin from ($\beta$-Conglycinin의 대장균 발현과 정제)

  • 노영희
    • The Korean Journal of Food And Nutrition
    • /
    • v.12 no.2
    • /
    • pp.184-190
    • /
    • 1999
  • Soybean protein consists of two major components $\beta$-conglycinin and glycinin which together consti-tute 70% of the total seed storage protein at maturity. $\beta$-Conglycinin is trimeric glycoprotein and for-med by the assembly of various combinations of three subunits $\alpha$,$\alpha$' and $\beta$ which have molecular weig-hts of 69,000, 72,000 and 42,000, respectively. Recently $\beta$-conglycinin was identified as powerful LDL lip-oprotein receptor activation hypercholesterolemia and major allergenic proteins. To investigate these reasons we constructed an expression system of cDNA encoding $\alpha$-subunit of $\beta$-conglycinin in Escherichia coli and purified the expressed protein. The pro-$\beta$-conglycinin synthesized in Escherichia coli BL 21 (DE3)comprised approximately 15% of the total bacterial proteins and the expressed protein are formed sol-uble and trimer such as native protein in Escherichia coli cells. The highly expressed protein was purified to homogeneity by salt precipitation with 20~40 % ammonium sulfate ion-exchange chromatography with Q-sepharose and hydrophobic column chromatography with Butyltoyopearl.

  • PDF

Synthesis and spectroscopic characterization of zinc ferrite nanoparticles

  • Arora, Shefali;Nandy, Subhajit;Latwal, Mamta;Pandey, Ganesh;Singh, Jitendra P.;Chae, Keun H.
    • Advances in nano research
    • /
    • v.13 no.5
    • /
    • pp.437-451
    • /
    • 2022
  • Synthesis approaches usually affect the physical and chemical properties of ferrites. This helps ferrite materials to design them for desired applications. Some of these methods are mechanical milling, ultrasonic method, micro-emulsion, co-precipitation, thermal decomposition, hydrothermal, microwave-assisted, sol-gel, etc. These methods are extensively reviewed by taking example of ZnFe2O4. These methods also affect the microstructure and local structure of ferrite which ultimately affect the physical and chemical properties of ferrites. Various spectroscopic techniques such as Raman spectroscopy, Fourier Transform Infrared spectroscopy, Ultra Violet-Visible spectroscopy, Mossbauer spectroscopy, extended x-ray absorption fine structure, and electron paramagnetic resonance are found helpful to reveal this information. Hence, the basic principle and the usefulness of these techniques to find out appropriate information in ZnFe2O4 nanoparticles is elaborated in this review.

Synthesis of Fe/SiO2 Core-Shell Nanoparticles by a Reverse Micelle and Sol-Gel Processes

  • Son, Jeong-Hun;Bae, Dong-Sik
    • Korean Journal of Materials Research
    • /
    • v.22 no.6
    • /
    • pp.298-302
    • /
    • 2012
  • Fe/$SiO_2$ core-shell type composite nanoparticles have been synthesized using a reverse micelle process combined with metal alkoxide hydrolysis and condensation. Nano-sized $SiO_2$ composite particles with a core-shell structure were prepared by arrested precipitation of Fe clusters in reverse micelles, followed by hydrolysis and condensation of organometallic precursors in micro-emulsion matrices. Microstructural and chemical analyses of Fe/$SiO_2$ core-shell type composite nanoparticles were carried out by TEM and EDS. The size of the particles and the thickness of the coating could be controlled by manipulating the relative rates of the hydrolysis and condensation reaction of TEOS within the micro-emulsion. The water/surfactant molar ratio influenced the Fe particle distribution of the core-shell composite particles, and the distribution of Fe particles was broadened as R increased. The particle size of Fe increased linearly with increasing $FeNO_3$ solution concentration. The average size of the cluster was found to depend on the micelle size, the nature of the solvent, and the concentration of the reagent. The average size of synthesized Fe/$SiO_2$ core-shell type composite nanoparticles was in a range of 10-30 nm and Fe particles were 1.5-7 nm in size. The effects of synthesis parameters, such as the molar ratio of water to TEOS and the molar ratio of water to surfactant, are discussed.

Effect of Surface Treatment of CdS-TiO2 Composite Photocatalysts with Film Type on Hydrogen Production (수소제조에 관한 박막형 CdS-TiO2 복합 광촉매계의 표면처리 효과)

  • Jang, Jum-Suk;So, Won-Wook;Kim, Kwang-Je;Moon, Sang-Jin
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.1
    • /
    • pp.34-41
    • /
    • 2002
  • CdS and $TiO_2$ nanoparticles were made by the precipitation method and sol-gel method, respectively, and they were mixed mechanically and then treated with the hydrothermal processing. CdS-$TiO_2$ composite particulate films were thus prepared by casting CdS-$TiO_2$ mixed sol onto $SnO_2$ conducting glass and a subsequent heat-treatment at $400^{\circ}C$. Again, the physico-chemical and photoelectrochemical properties of these films were controlled by the surface treatment with $TiCl_4$ aqueous solution. The photocurrents and the hydrogen production rates measured under the present experimental conditions varied in the range of $3.5{\sim}4.5mA/cm^2$ and $0.3{\sim}1.8cc/cm^2$-hr, respectively, and showed the maximum values at the $CdS/[CdS+TiO_2]$ mole ratio of 0.2. Also, the surface treatment with $TiCl_4$ aqueous solution caused a considerable improvement in the photocatalytic activity, Probably as a result of close contacts between the primary particles by the etching effect of $TiCl_4$ It was found that the photoelectrochemical performance of these particulate films could be effectively enhanced by this approach.

Characteristic Evaluation according to Heat Treatment Conditions of Super Duplex Stainless Steel with Additive 0.2% N - Part 3: Corrosion Characteristic (0.2% N을 첨가한 수퍼 2상 스테인리스강의 열처리 조건에 따른 특성 평가 - 제3보: 부식특성)

  • Ahn, Seok-Hwan;Kang, Heung-Joo;Seo, Hyun-Soo;Nam, Ki-Woo;Lee, Kun-Chan
    • Journal of Ocean Engineering and Technology
    • /
    • v.23 no.5
    • /
    • pp.85-91
    • /
    • 2009
  • A stainless steel that contains aggressive negative ion was known to decrease the corrosion resistance. Stainless steel with super corrosion resistance was developed for improvement of corrosion resistance. Super duplex stainless steel is widely used under sever environment because of good mechanical properties and corrosion resistance. Also, Super duplex stainless steel has long life in severe environments by showing the enough strength and corrosion resistance. But duplex stainless steel is not stabilized compared to austenite stainless steel in corrosion resistance. In this study, corrosion characteristic were investigated to super duplex stainless steel with additive 0.2% nitrogen with $SiO_2$ thin films coated or no coated by sol-gel method in 3.5% NaCl. From test results, corrosion current density in the heat-treated specimen for ${\sigma}$ phase precipitation was higher than that of different heat-treated specimen. Also, $SiO_2$ colloidal-coated specimen had not occurred almost corrosion.