• 제목/요약/키워드: Sol-gel hybrid binder

검색결과 12건 처리시간 0.019초

Preparation and Characterization of Organic-inorganic Hybrid Composite Film with Plate-shaped Alumina by Electrophoretic Deposition as a Function of Aging Time of Sol-Gel Binder

  • Kim, Doo Hwan;Park, Hee Jeong;Choi, Jinsub;Lim, Hyung Mi
    • 한국세라믹학회지
    • /
    • 제52권5호
    • /
    • pp.366-373
    • /
    • 2015
  • Sol-gel binder was prepared by hydrolysis and condensation reaction using boehmite sol and methyltrimethoxysilane as a function of aging-time. The coating slurry was composed of a plate-shape alumina in the sol-gel binder for the EPD process, in which particles dispersed in the slurry were deposited on the electrode under an electric field due to the surface charge. We studied the effects of three parameters: the content of boehmite, the aging time, and the applied voltage, on the physical, thermal, and electrical properties of the hybrid composite films by EPD. The amount of boehmite was 10 ~ 20 wt% and the aging time was 0.5 ~ 72, with a fixed amount of plate-shape alumina of 10 wt%. The condition of applied voltage was 5 ~ 30 V with a distance of 2 cm between the electrode during the EPD process. We confirmed that a structure of hybrid composite films of well-ordered plate alumina was deposited on the substrate when the film was prepared using a sol-gel binder composed of 15 wt% boehmite with 1 hr aging time and EPD at 10 V. The process shows a weight loss of 7% at $500^{\circ}C$ in TGA and a breakdown voltage of 8 kV at $87{\mu}m$.

솔-젤법을 이용한 투명 칼라 코팅유리 제조 (Fabrication of Transparent Color Coating Glass by Sol-gel Method)

  • 박종국;전대우;이미재;임태영;황종희;김진호
    • 한국전기전자재료학회논문지
    • /
    • 제29권1호
    • /
    • pp.40-43
    • /
    • 2016
  • Transparent color coating films were fabricated on a glass substrate by using sol-gel hybrid binder and organic dye. Sol-gel hybrid binder coating film fabricated with PTMS of 0.03 mole showed a very high pencil hardness of 9 H. As the withdrawal speed increased from 1.0 mm/s to 5.0 mm/sec, The yellowness ($b^*$) of coating glass also gradually increased. The transmittance of yellow color coating glass was 82.6% and the haze of coating glass was 0.35%. Red and blue color coating glasses also showed the high transmittance of 62.4% and 80.6% respectively. The surface hardness of color coating films was 6 H.

졸-겔 공정에 의한 유기변성 하이브리드 세라믹 물질의 미세 마찰마모 특성 (An Experimental Study on the Micro Friction and Wear Characteristics of Organically Modified Hybrid Ceramic Materials by A Sol-Gel Process)

  • 한흥구;공호성;윤의성;양승호
    • 한국윤활학회:학술대회논문집
    • /
    • 한국윤활학회 2002년도 제35회 춘계학술대회
    • /
    • pp.215-225
    • /
    • 2002
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several combinations of metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), $titaniumisopropoxide(Ti(Opr^{j})_{4})$, $zirconiumisopropoxide(Zr(Opr^{j})_{4})$ and $aluminumbutoxide(Al(Obu^{t})_{4})$ were chemically modified by epoxy-, acrylic- and fluoro-silane compounds, respectively, in this work. Friction and wear characteristics of these hybrid ceramic materials were tested with a micro tribe-tester where a reciprocating steel ball slid on a test material, and the tribological property was also evaluated with respect to both heat-curing temperature and tile time. Test results generally showed that hybrid ceramic materials modified by epoxy-silane compounds had a low friction compared to others. And the higher heat-curing temperature and the longer heat treatment time resulted in the higher friction and the lower wear. IR spectroscopic analyses revealed that it was caused mainly by the increased metal oxide content in hybrid ceramics when the heat-curing temperature was over $320^{\circ}C$.

  • PDF

졸-겔 공정에 의한 유기변성 하이브리드 세라믹 물질의 미세 마찰마모 특성 (Micro Friction and Wear Characteristics of Organically Modified Hybrid Ceramic Materials Synthesized by A Sol-Gel Process)

  • 한흥구;공호성;윤의성;양승호
    • Tribology and Lubricants
    • /
    • 제18권5호
    • /
    • pp.324-332
    • /
    • 2002
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), titaniumisopropoxide$(Ti(Opr^i)_4),$ zirconiumisopropoxide $(Zr(Opr^i)_4)$ and aluminumbutoxide$(Al(Obu^t)_4)$ were chemically modified by epoxy-, acrylic- and fluoro-silane compounds, respectively. Friction and wear characteristics of these hybrid ceramic materials were tested with a micro tribo-tester, and evaluated with respect to both heat-curing temperature and the time. Test results generally showed that hybrid ceramic materials modified by epoxy-silane compounds had a low friction compared to others. And the higher het-curing temperature and the longer heat treatment time resulted in the higher friction and the lower wear. IR spectroscopic analyses revealed that these results were caused mainly by the increased metal oxide content in hybrid ceramics when the heat-curing temperature was over $320^{\circ}C.$

유-무기 하이브리드 화합물과 Particle-Binder 공정을 이용한 소수성 코팅막 제조 (Preparation of Hydrophobic Coating Layers Using Organic-Inorganic Hybrid Compounds Through Particle-to-Binder Process)

  • 황승희;김효원;김주영
    • 접착 및 계면
    • /
    • 제21권4호
    • /
    • pp.143-155
    • /
    • 2020
  • Sol-Gel 공정을 통해서 제조되는 유-무기 하이브리드 화합물들은 방청 코팅, 방빙 코팅(Anticing), 자가 세정 코팅, 반사 방지 코팅 등과 같은 기능성 코팅 재료로 널리 사용되어져 왔다. 특히 소수성 코팅 표면을 제조하기 위해서는 코팅표면의 표면에너지가 낮고 코팅 표면의 조도를 제어가 요구된다. 표면에너지와 표면 조도를 조절하는 전형적인 공정은 in-situ fabrication 공정, 'Pre-fluorinating/Post-roughening', 'Pre-roughening/ Post-fluorinating이다. 본 연구에서는 in-situ fabrication 공정인 Particle-Binder 공정을 이용해서 소수성 코팅표면을 제조하였다. 3관능기 유기실란화합물과 불소 함유 유기실란 화합물과의 가수분해 및 축합반응을 통해 제조된 불소함유 유-무기 하이브리드를 바인더로 사용하여서 무기물 나노입자와 혼합하여 소수성 코팅액을 제조하고 유리 기재 위에 스핀코팅 후 열건조하여서 코팅막을 제조하였다. 바인더인 유-무기 하이브리드 화합물의 불소 함유 실란화합물의 첨가량, 첨가순서, 무기물 나노입자 첨가량에 따른 코팅막의 물성 변화를 조사하였다. 분석결과 불소 함량이 10 wt%인 유-무기 하이브리드 화합물(GPTi-HF10)을 바인더로 사용하여서 제조된 코팅막이 가장 소수성이 우수하였으며 수접촉각은 (107.52 ± 1.6°), 이 바인더와 무기물 나노입자의 무게비가 1:3인 경우(GPTi-HF10-MS 3.0)에 가장 높은 수접촉각(130.84±1.99°)을 나타내었다.

유기변성 하이브리드 세라믹 물질을 결합제로 이용한 고체피막윤활제의 마찰마모 특성 (Friction and Wear Characteristics of Bonded Film Lubricants of Organically Modified Hybrid Ceramic Binder Materials)

  • 한흥구;공호성;윤의성
    • Tribology and Lubricants
    • /
    • 제19권4호
    • /
    • pp.203-210
    • /
    • 2003
  • In order to enhance the thermal stability of binder materials of bonded type solid lubricants, several metal-alkoxide based sol-gel materials such as methyltrimethoxysilane(MTMOS), titaniumisopropoxide (Ti(Opr$\^$i/)$_4$), zirconiumisopropoxide (Zr(Opr$\^$i/)$_4$) and aluminumbutoxide (Al(Obu$\^$t/)$_4$) were modified chemically by both epoxy and acrylic silane compounds. Friction and wear characteristics of the bonded solid lubricants, whose binders were of several hybrid ceramic materials, were tested with a reciprocating tribo-tester. Wear life was evaluated with respect to the heat-curing temperature, friction temperature, type of supplement lubricants, and ratio of binder materials. Test results showed that the Si-Zr hybrid ceramic materials modified by epoxy-silane compounds had a higher wear life compared to others. Sb$_2$O$_3$ was the most effective supplement lubricants in the high temperature, and BUS analyses revealed that it was caused mainly by a strong anti-oxidation effect to MoS$_2$ particles. The higher heat-curing temperature resulted in the higher wear life, and the higher friction temperature resulted in the lower wear life.

Analysis of Optical Properties with Photopolymers for Holographic Application

  • Kim Nam;Hwang Eun-Seop;Shin Chang-Won
    • Journal of the Optical Society of Korea
    • /
    • 제10권1호
    • /
    • pp.1-10
    • /
    • 2006
  • Optical transparency and high diffraction efficiency are two essential factors for high performance of the photopolymer. Optical transparency mainly depends on the miscibility between polymer binder and photopolymerized polymer, while diffraction efficiency depends on the refractive index modulation between polymer binder and photopolymerized polymer. For most of organic materials, the large refractive index difference between two polymers accompanies large structural difference that leads to the poor miscibility and thus poor optical quality via light scattering. Therefore, it is difficult to design a high-performance photopolymer satisfying both requirements. In this work, first, we prepared a new phase-stable photopolymer (PMMA) with large refractive index modulation and investigated the optical properties. Our photopolymer is based on modified poly (methyl methacrylate) as a polymer binder, acryl amide as a photopolymerizable monomer, triethanolamine as initiator, and yellow eosin as a photosensitizer at 532 nm. Diffraction efficiency over 85% and optical transmittance over 90% were obtained for the photopolymer. Second, Organic-inorganic nanocomposite films were prepared by dispersing an aromatic methacrylic monomer and a photo- initiator in organic-inorganic hybrid sol-gel matrices. The film properties could be controlled by optimizing the content of an organically modified silica precursor (TSPEG) in the sol-gel matrices. The photopolymer film modified with the organic chain (TSPEG) showed high diffraction efficiency (> 90%) under an optimized condition. High diffraction efficiency could be ascribed to the fast diffusion and efficient polymerization of monomers under interference light to generate refractive index modulation. The TSPEG modified photopolymer film could be successfully used for holographic memory.

초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체 (Catalyst preparations, coating methods, and supports for micro combustor)

  • 진정근;김충기;권세진
    • 한국연소학회:학술대회논문집
    • /
    • 한국연소학회 2006년도 제33회 KOSCO SYMPOSIUM 논문집
    • /
    • pp.235-241
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and no flame quenching. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95% for $H_2$/Air premixed gas.

  • PDF

초소형 연소기를 위한 촉매 합성, 담지방법 및 담지체 (Catalyst Preparations, Coating Methods, and Supports for Micro Combustor)

  • 진정근;김충기;이성호;권세진
    • 한국연소학회지
    • /
    • 제11권2호
    • /
    • pp.7-14
    • /
    • 2006
  • Catalytic combustion is one of the suitable methods for micro power source due to high energy density and it can be applied to micro structured chamber without consideration of quenching since it is flameless combustion. Catalyst loading in the micro structured combustion chamber is one of the most important issues in the development of micro catalytic combustors. In this research, to coat catalyst on the chamber wall, two methods were investigated. First, $Al_2O_3$ was selected as a support of Pt and $Pt/Al_2O_3$ was synthesized through the alumina sol-gel procedure. To improve the coating thickness and adhesion between catalyst and substrate, heat resistant and water solvable organic-inorganic hybrid binder was used. Porous silicon was also investigated as a catalyst support for platinum. Through the parametric studies of current density and etching time, fabrication process of $1{\sim}2{\mu}m$ of diameter and about $25{\mu}m$ depth pores was confirmed. Coated substrates were test in the micro channel combustor which was fabricated by the wet etching and machining of SUS 304. Using $Pt/Al_2O_3$ coated substrate and Pt coated porous silicon substrate, conversion rate of fuel was over 95 % for $H_2/Air$ premixed gas.

  • PDF

솔-젤 법에 의한 적외선 차단 ATO 박막 제조 (Fabrication of ATO thin film for IR-cut off by sol-gel method)

  • 김진호;이광희;이미재;황종희;임태영
    • 한국결정성장학회지
    • /
    • 제23권5호
    • /
    • pp.230-234
    • /
    • 2013
  • ATO 나노 입자들로 구성된 적외선 차단 박막이 솔-젤 법에 의해 성공적으로 제조되었다. 코팅액은 유무기 하이브리드 바인더와 콜로이드 ATO 용액으로 합성되었고 ATO 박막은 슬라이드 유리기판에 5~40 mm/s의 인상속도로 코팅되었다. 인상속도가 5 mm/s에서 40 mm/s로 증가함에 따라 코팅막의 두께 또한 $1.05{\mu}m$에서 $4.25{\mu}m$로 증가하였다. 그리고 파장 780 nm에서 2500 nm에서의 적외선 차단율은 49.5 %에서 66.7 %로 증가하였다. 또한 $80^{\circ}C$에서 건조된 ATO 박막의 연필경도 값은 5H를 나타내었고 tetraethylorthosilicate와 methyltrimethoxysilane을 합성한 하이브리드 바인더의 영향으로 테이프테스트 후 코팅막은 벗겨지지 않았다. 서로 다른 인상속도에 의해 제조된 박막의 표면구조, 광학적 특성 그리고 박막두께는 FE-SEM, UV-Vis-NIR 분광기 그리고 Dektak에 의해 측정되었다.