• Title/Summary/Keyword: Sol-Gel Method

Search Result 1,436, Processing Time 0.036 seconds

Electrospun Antimicrobial Polyurethane Nanofibers Containing Silver Nanoparticles for Biotechnological Applications

  • Sheikh, Faheem A.;Barakat, Nasser A.M.;Kanjwal, Muzafar A.;Chaudhari, Atul A.;Jung, In-Hee;Lee, John-Hwa;Kim, Hak-Yong
    • Macromolecular Research
    • /
    • v.17 no.9
    • /
    • pp.688-696
    • /
    • 2009
  • In this study, a new class of polyurethane (PU) nanofibers containing silver (Ag) nanoparticles (NPs) was synthesized by electrospinning. A simple method that did not depending on additional foreign chemicals was used to self synthesize the silver NPs in/on PU nanofibers. The synthesis of silver NPs was carried out by exploiting the reduction ability of N,N-dimethylformamide (DMF), which is used mainly to decompose silver nitrate to silver NPs. Typically, a sol-gel consisting of $AgNO_3$/PU was electrospun and aged for one week. Silver NPs were created in/on PU nanofibers. SEM confirmed the well oriented nanofibers and good dispersion of pure silver NPs. TEM indicated that the Ag NPs were 5 to 20 nm in diameter. XRD demonstrated the good crystalline features of silver metal. The mechanical properties of the nanofiber mats showed improvement with increasing silver NPs content. The fixedness of the silver NPs obtained on PU nanofibers was examined by harsh successive washing of the as-prepared mats using a large amount of water. The results confirmed the good stability of the synthesized nanofiber mats. Two model organisms, E. coli and S. typhimurium, were used to check the antimicrobial influence of these nanofiber mats. Subsequently, antimicrobial tests indicated that the prepared nanofibers have a high bactericidal effect. Accordingly, these results highlight the potential use of these nanofiber mats as antimicrobial agents.

Synthesis of Au/TiO2 Core-Shell Nanoparticles by Using TTIP/TEOA Mixed Solution (TTIP/TEOA 혼합용액을 이용한 Au/TiO2 Core-Shell 구조 나노입자 합성)

  • Kwon, Hyun-Woo;Lim, Young-Min;Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.16 no.8
    • /
    • pp.524-528
    • /
    • 2006
  • On the synthesis of Au/$TiO_2$ core-shell structure nanoparticle, the effect of concentration of $Ti^{4+}$ and reaction temperature on the morphology and optical property of Au/$TiO_2$ core-shell nanoparticles is examined. A gold colloid was prepared by $HAuCl_4{\cdot}4H_2O\;and\;C_6H_5Na_3{\cdot}2H_2O$. Titanium stock solution was prepared by mixing solution of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentrations of $Ti^{4+}$ stock solution were adjusted to $10.01{\sim}0.3$ mM, and then the gold colloid is added to the $Ti^{4+}$ stock solution. Au/$TiO_2$ core-shell structure nanoparticles could be prepared by the hydrolysis of the $Ti^{4+}$ stock solution at $80^{\circ}C$. The size of synthesized Au nanoparticles was 15 nm. The thickness of $TiO_2$ shell on the surface of gold particles was about 10 nm. The absorption peak of synthesized Au/$TiO_2$ core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of $TiO_2$ shell on the surface of gold particles. The good $TiO_2$ shell is produced when $Ti^{4+}$ concentration is varied between 0.01 and 0.05 mM, and reaction temperature is maintained at $80^{\circ}C$. The crystal structure of $TiO_2$ shell was amorphous.

Metal-Semiconductor Contact Behavior of Solution-Processed ZnSnO Thin Film Transistors (용액법으로 제작된 ZnSnO 박막트랜지스터의 전극 물질에 따른 계면 접촉특성 연구)

  • Jeong, Young-Min;Song, Keun-Kyu;Woo, Kyoo-Hee;Jun, Tae-Hwan;Jung, Yang-Ho;Moon, Joo-Ho
    • Korean Journal of Materials Research
    • /
    • v.20 no.8
    • /
    • pp.401-407
    • /
    • 2010
  • We studied the influence of different types of metal electrodes on the performance of solution-processed zinc tin oxide (ZTO) thin-film transistors. The ZTO thin-film was obtained by spin-coating the sol-gel solution made from zinc acetate and tin acetate dissolved in 2-methoxyethanol. Various metals, Al, Au, Ag and Cu, were used to make contacts with the solution-deposited ZTO layers by selective deposition through a metal shadow mask. Contact resistance between the metal electrode and the semiconductor was obtained by a transmission line method (TLM). The device based on an Al electrode exhibited superior performance as compared to those based on other metals. Kelvin probe force microscopy (KPFM) allowed us to measure the work function of the oxide semiconductor to understand the variation of the device performance as a function of the types metal electrode. The solution-processed ZTO contained nanopores that resulted from the burnout of the organic species during the annealing. This different surface structure associated with the solution-processed ZTO gave a rise to a different work function value as compared to the vacuum-deposited counterpart. More oxygen could be adsorbed on the nanoporous solution-processed ZTO with large accessible surface areas, which increased its work function. This observation explained why the solution-processed ZTO makes an ohmic contact with the Al electrode.

Synthesis and Surface Properties of Hierarchical SiO2 Coating Layers by Forming Au Nanoparticles (금 나노입자 형성을 이용한 계층구조 SiO2 코팅층의 제조 및 표면 특성)

  • Kim, Ji Yeong;Kim, Eun-Kyeong;Kim, Sang Sub
    • Korean Journal of Materials Research
    • /
    • v.23 no.1
    • /
    • pp.53-58
    • /
    • 2013
  • Superhydrophobic $SiO_2$ layers with a micro-nano hierarchical surface structure were prepared. $SiO_2$ layers deposited via an electrospray method combined with a sol-gel chemical route were rough on the microscale. Au particles were decorated on the surface of the microscale-rough $SiO_2$ layers by use of the photo-reduction process with different intensities ($0.11-1.9mW/cm^2$) and illumination times (60-240 sec) of ultraviolet light. With the aid of nanoscale Au nanoparticles, this consequently resulted in a micro-nano hierarchical surface structure. Subsequent fluorination treatment with a solution containing trichloro(1H,2H,2H,2H-perfluorooctyl)silane fluorinated the hierarchical $SiO_2$ layers. The change in surface roughness factor was in good agreement with that observed for the water contact angle, where the surface roughness factor developed as a measure needed to evaluate the degree of surface roughness. The resulting $SiO_2$ layers revealed excellent repellency toward various liquid droplets with different surface tensions ranging from 46 to 72.3 mN/m. Especially, the micro-nano hierarchical surface created at an illumination intensity of $0.11mW/cm^2$ and illumination time of 60 sec showed the largest water contact angle of $170^{\circ}$. Based on the Cassie-Baxter and Young-Dupre equations, the surface fraction and work of adhesion for the micronano hierarchical $SiO_2$ layers were evaluated. The work of adhesion was estimated to be less than $3{\times}10^{-3}N/m$ for all the liquid droplets. This exceptionally small work of adhesion is likely to be responsible for the strong repellency of the liquids to the micro-nano hierarchical $SiO_2$ layers.

Preparation and Characterization of Unsaturated Poly(3-hydroxyalkanoate) Nanoparticles (불포화 폴리히드록시알칸오에이트 나노입자의 제조 및 특성)

  • 한정현;김승수;신병철;이영하;홍성욱
    • Polymer(Korea)
    • /
    • v.27 no.6
    • /
    • pp.542-548
    • /
    • 2003
  • Nanoparticles with unsaturated poly(hydroxyalkanoate)s (UPHAs) biosynthesized with Pseudo-monas oleovorans were prepared by spontaneous emulsification solvent diffusion method. The influence of nanoparticle formation was investigated with various experimental parameters such as sonication conditions, sol-vent, surfactant and polymer contents, etc. The physical and chemical properties of UPHAS and its nanoparticles were characterized using $^1$H- and $\^$13/C-nuclear magnetic resonance spectroscopies, attenuated total reflection infrared spectroscopy, differential scanning calorimetry and gel permeation chromatography. The morphology of particles was observed using scanning electron microscope and the size and distribution of nanoparticles were measured with electrophoretic light scattering spectrophotometer. The mean diameter of particles decreased with increasing sonication amplitude and time. The addition of ethanol into UPHAS chloroform solution decreased the particle size presumably due to increased solvent diffusion into water phase. The particle size increased with increased the concentration of UPHAS solution. Under the 2-4% poly(vinyl alcohol) (PVA) aqueous solution the minimum mean diameter of particles was shown. The higher degree of hydrolysis and degree of polymerization of PVA increased the mean diameter of particles.

Mössbauer Study of AIFeO3 (AIFeO3 물질의 Mössbauer 분광학적 연구)

  • We, Jee-Hoon;Kim, Sam-Jin;Kim, Chul-Sung
    • Journal of the Korean Magnetics Society
    • /
    • v.16 no.1
    • /
    • pp.14-17
    • /
    • 2006
  • [ $AIFeO_3$ ]has been studied by x-ray diffraction (XRD), vibrating sample magnetometer, Mossbauer spectroscopy. The crystal structure is found to orthorhombic with the lattice parameters being $a_0=4.983\;{\AA},\;b_0=8.554\;{\AA},\;c_0=9.239\;{\AA}$, Magnetic hysteresis curve for $AIFeO_3$ showed weakly ferromagnetic phase at room temperature and a asymmetric shape dependent on the direction of applied field at low temperature. The Curie temperature determined by the temperature dependence of magnetization is 250 K. Mossbauer spectra of $AIFeO_3$ have been taken from 4.2 K to 295 K. Isomer shift at room temperature are found to be $0.11\~0.32\;mm/s$, which is consistent with ferric state. The absorption lines widths become broader with increasing temperature, which is attributed to the Fe ions distribution of each cation site and anisotropy energy difference of each sublattice.

Effects of Annealing Temperature on the Properties of Solid Phase Epitaxy YIG Films (열처리온도가 고상에피택시 YIG박막의 특성에 미치는 영향)

  • Jang, Pyung-Woo
    • Journal of the Korean Magnetics Society
    • /
    • v.13 no.6
    • /
    • pp.221-225
    • /
    • 2003
  • Effects of annealing temperature on the crystalline and magnetic properties of YIG films grown by solid phase epitaxy. The eptiaxy films were made by annealing Fe-Y-O amorphous films in the air at 550-1050 $^{\circ}C$ which were sputtered on GGG (111) substrates in a conventional rf sputtering system. Crystallization temperature of Fe-Y-O amorphous films on GGG (111) substrate was between 600 and 650 $^{\circ}C$ which is much lower than that Fe-Y-O powder prepared by sol-gel method. Excellent epitaxial growth of YIG films could be conformed by the facts that the diffraction intensity of YIG (888) plane was comparable with that of GGG (888) plane and full width at half maximum of YIG (888) rocking curve was smaller than 0.14$^{\circ}$ when films were annealed at 1050 $^{\circ}C$. It could be seen that it is necessary to anneal the films at higher temperature for an excellent epitaxy because lattice parameter of YIG films were smaller and the peak of YIG (888) plane is higher and narrower with increasing annealing temperature. Films annealed at higher temperature shows M-H loop with perpendicular anisotropy which was due to 0.15% lattice mismatch between YIG and GGG.

pH Dependence on the Degradation of Rhodamine B by Fe-ACF/$TiO_2$ Composites and Effect of Different Fe Precursors (Fe-ACF/$TiO_2$ 복합체에 의한 로다민 B 용액의 분해에 있어서 pH 의존성 및 여러 가지 Fe 전구체의 효과)

  • Zhang, Kan;Oh, Won-Chun
    • Elastomers and Composites
    • /
    • v.44 no.4
    • /
    • pp.408-415
    • /
    • 2009
  • Iron-loaded activated carbon fibers (Fe-ACF) supported titanium dioxide ($TiO_2$) photocatalyst (Fe-ACF/$TiO_2$) was synthesized using a sol-gel method. Three different types of Fe-ACF/$TiO_2$ were obtained by treatment with different precursor of Fe, and characterized using BET, SEM, XRD and EDX analysis. The photocatalytic activity of Fe-ACF/$TiO_2$ was investigated by the degradation of Rhodamine B (Rh.B) solution under UV irradiation. From the experimental results, it was revealed that Fe-ACF/$TiO_2$ composites show considerable photocatalytic ability for the removal of Rh.B by comparing non-treated ACF/$TiO_2$ composites. And photo-Fenton reaction with Fe element was incoordinately influenced due to different precursor of Fe. It clearly indicates that Fe-ACF/$TiO_2$ composites prepared using $FeCl_3$ provided the highest photo-Fenton activity, then, which was affected by pH changes on the degradation of Rh.B.

Synthesis and Electrochemical Performance of Li2MnSiO4 for Lithium Ion Battery Prepared by Amorphous Silica Precusor (비정질 실리콘 산화물을 이용한 리튬망간실리콘산화물의 합성 및 전기화학적 특성 평가)

  • Jin, Yun-Ho;Lee, Kun-Jae;Kang, Lee-Seung;Jung, Hang-Chul;Hong, Hyun-Seon
    • Journal of Powder Materials
    • /
    • v.19 no.3
    • /
    • pp.210-214
    • /
    • 2012
  • Mass production-capable $Li_2MnSiO_4$ powder was synthesized for use as cathode material in state-of-the-art lithium-ion batteries. These batteries are main powder sources for high tech-end digital electronic equipments and electric vehicles in the near future and they must possess high specific capacity and durable charge-discharge characteristics. Amorphous silicone was quite superior to crystalline one as starting material to fabricate silicone oxide with high reactivity between precursors of sol-gel type reaction intermediates. The amorphous silicone starting material also has beneficial effect of efficiently controlling secondary phases, most notably $Li_xSiO_x$. Lastly, carbon was coated on $Li_2MnSiO_4$ powders by using sucrose to afford some improved electrical conductivity. The carbon-coated $Li_2MnSiO_4$ cathode material was further characterized using SEM, XRD, and galvanostatic charge/discharge test method for morphological and electrochemical examinations. Coin cell was subject to 1.5-4.8 V at C/20, where 74 mAh/g was observed during primary discharge cycle.

Kinetic Study of the Visible Light-Induced Sonophotocatalytic Degradation of MB Solution in the Presence of Fe/TiO2-MWCNT Catalyst

  • Zhang, Kan;Oh, Won-Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.6
    • /
    • pp.1589-1595
    • /
    • 2010
  • In order to effective degradation of organic dye both under visible light or ultrasonic irradiation, the MWCNTs (multiwalled carbon nanotube) deposited with Fe and $TiO_2$ were prepared by a modified sol-gel method. The Fe/$TiO_2$-MWCNT catalyst was characterized by surface area of BET, scanning electron microscope (SEM), Transmission Electron Microscope (TEM), X-ray diffraction (XRD), and energy dispersive X-ray (EDX) and ultraviolet-visible (UV-vis) spectroscopy. The low intensity visible light and low power ultrasound was as an irradiation source and the methylene blue (MB) was choose as the model organic dye. Then degradation experiments were carried out in present of undoped $TiO_2$, Fe/$TiO_2$ and Fe/$TiO_2$-MWCNT catalysts. Through the degradation of MB solution, the results showed the feasible and potential use of Fe/$TiO_2$-MWCNT catalyst under visible light and ultrasonic irradiation due to the enhanced formation of reactive radicals as well as the possible visible light and the increase of ultrasound-induced active surface area of the catalyst. After addition of $H_2O_2$, the MB degradation rates have been accelerated, especially with Fe/$TiO_2$-MWCNT catalyst, in case of that the photo-Fenton reaction occurred. The sonophotocatalysis was always faster than the respective individual processes due to the more formation of reactive radicals as well as the increase of the active surface area of Fe/$TiO_2$-MWCNT catalyst.