DOI QR코드

DOI QR Code

Synthesis of Au/TiO2 Core-Shell Nanoparticles by Using TTIP/TEOA Mixed Solution

TTIP/TEOA 혼합용액을 이용한 Au/TiO2 Core-Shell 구조 나노입자 합성

  • Kwon, Hyun-Woo (Division of Advanced Materials Science & Engineering, Chonbuk National University, Research Center of Advanced Materials Development) ;
  • Lim, Young-Min (Division of Advanced Materials Science & Engineering, Chonbuk National University, Research Center of Advanced Materials Development) ;
  • Yu, Yeon-Tae (Division of Advanced Materials Science & Engineering, Chonbuk National University, Research Center of Advanced Materials Development)
  • 권현우 (전북대학교 신소재공학부, 신소재 개발 연구 센터) ;
  • 임영민 (전북대학교 신소재공학부, 신소재 개발 연구 센터) ;
  • 유연태 (전북대학교 신소재공학부, 신소재 개발 연구 센터)
  • Published : 2006.08.27

Abstract

On the synthesis of Au/$TiO_2$ core-shell structure nanoparticle, the effect of concentration of $Ti^{4+}$ and reaction temperature on the morphology and optical property of Au/$TiO_2$ core-shell nanoparticles is examined. A gold colloid was prepared by $HAuCl_4{\cdot}4H_2O\;and\;C_6H_5Na_3{\cdot}2H_2O$. Titanium stock solution was prepared by mixing solution of titanium(IV) isopropoxide (TTIP) and triethanolamine (TEOA). The concentrations of $Ti^{4+}$ stock solution were adjusted to $10.01{\sim}0.3$ mM, and then the gold colloid is added to the $Ti^{4+}$ stock solution. Au/$TiO_2$ core-shell structure nanoparticles could be prepared by the hydrolysis of the $Ti^{4+}$ stock solution at $80^{\circ}C$. The size of synthesized Au nanoparticles was 15 nm. The thickness of $TiO_2$ shell on the surface of gold particles was about 10 nm. The absorption peak of synthesized Au/$TiO_2$ core-shell nanoparticles shifted towards the red end of the spectrum by about 3 nm because of the formation of $TiO_2$ shell on the surface of gold particles. The good $TiO_2$ shell is produced when $Ti^{4+}$ concentration is varied between 0.01 and 0.05 mM, and reaction temperature is maintained at $80^{\circ}C$. The crystal structure of $TiO_2$ shell was amorphous.

Keywords

References

  1. M. M. Y Chen and A. Katz, Langmuir, 18, 8566 (2002) https://doi.org/10.1021/la026055r
  2. F. Osterloh, H. Hiramatsu, R. Porter and T. Guo, Langmuir, 20, 5553 (2004) https://doi.org/10.1021/la0348719
  3. L. Cac, L. Tong, P. Diao, T. Zhu and Z. Liu, Chem. Mater., 16, 3239 (2004) https://doi.org/10.1021/cm0348491
  4. Y. P. Sun, J. E. Riggs, H. W. Rollins and R. Guduru, J. Phys. Chem. B. 103, 77 (1999) https://doi.org/10.1021/jp9835014
  5. M. Zhu, G. Qian, G. Ding, Z. Wang and M. Wang, Mater. Chem. Phys., 96, 489 (2006) https://doi.org/10.1016/j.matchemphys.2005.07.040
  6. Y. Lei and W. K. Chim, J. Am. Chem. Soc., 127, 1487 (2005) https://doi.org/10.1021/ja043969m
  7. T. Ung, L. M. Liz-Marzan and P. Mulvaney, Langmuir, 14, 3740 (1998) https://doi.org/10.1021/la980047m
  8. E. Mine, A. Yamada. Y. Kobayashi, M. Konno and L. M. Liz-Marzan, J. Colloid Interface Sci., 264, 385 (2003) https://doi.org/10.1016/S0021-9797(03)00422-3
  9. Y. Kobayashi, H. Katakami, E. Mine, D. Nagao, M. Konno and L. M. Liz-Marzan, J. Colloid Interface Sci., 283, 392 (2005) https://doi.org/10.1016/j.jcis.2004.08.184
  10. J. H. Werth, M. Linsenbuhler, S. M. Dammer, Z. Farkas, H. Hinrichsen, K. E. Wirth and D. Wolf, Powder Technol., 133, 106 (2003) https://doi.org/10.1016/S0032-5910(03)00096-2
  11. Oldfield, Geordie, Ung, Thearith and P. Mulvaney, Adv. Mater., 12, 1519 (2000) https://doi.org/10.1002/1521-4095(200010)12:20<1519::AID-ADMA1519>3.0.CO;2-W
  12. A. Ismail, Appl. Catal., B, 58, 115 (2005) https://doi.org/10.1016/j.apcatb.2004.11.022
  13. G. Facchin, G. Carturan, R. Campostrini, S. Gialanella, L. Lutterotti, L. Armelao and Marc, J. Sol-Gel Sci. Technol., 18, 29 (2000) https://doi.org/10.1023/A:1008737612606
  14. K. S. Mayya, D. J. Gittins and F. Caruso, Chem. Mater., 13, 3833 (2001) https://doi.org/10.1021/cm011128y
  15. Dan Zhang, Ximing Song, Rongwei Zhang, Ming Zhang and Fengqu liu, Eur. J. Inorg. Chem., 2005, 1643 (2005) https://doi.org/10.1002/ejic.200400811
  16. Y-t. Yu and P. Mulvaney, Mater. Trans., 45, 964 (2004) https://doi.org/10.2320/matertrans.45.964
  17. B. V. Enustun and J. Turkenich, J. Am. Chem. Soc, 85, 3317 (1963) https://doi.org/10.1021/ja00904a001
  18. V. Kane and P. Mulvaney, Langmuir, 14, 3303 (1998) https://doi.org/10.1021/la971296y
  19. T. Sungmoto, X. Zhou and A. Muramatsu, J. Colloid. Interface Sci., 259, 43 (2003) https://doi.org/10.1016/S0021-9797(03)00036-5
  20. T. Sugimoto, K. Okada and H. Itoh, J. Colloid Interface Sci., 193, 140 (1997) https://doi.org/10.1006/jcis.1997.5037
  21. L. M. Liz-Marzan, M. Giersig and P. Mulvaney, Langmuir, 12, 4329 (1996) https://doi.org/10.1021/la9601871