• Title/Summary/Keyword: Sol-Gel Coating

Search Result 622, Processing Time 0.027 seconds

Phase Formation and Rheological Characteristics of LAS Derived from the Monophasic Sol-Gel Route (Sol-Gel 반응으로 유도된 LAS의 상 생성과 점성 특성)

  • 장현명;김광수;정창주
    • Journal of the Korean Ceramic Society
    • /
    • v.28 no.5
    • /
    • pp.365-372
    • /
    • 1991
  • LAS (lithium aluminosilicate) sol was synthesized using the hydrolysis-condensation reaction of TEOS, chelated Al(OBus)3 and Li-salt with H2O in alcohol (EtOH+2-Propanol) medium. Effects of important reaction parameters on the properties of sol and gel-derived LAS were examined. The crystallization of the sol-gel derived LAS with ${\beta}$-spodumene composition began at ∼600$^{\circ}C$, and a series of polymorphic transformations occurred as temperature was increased to 1100$^{\circ}C$: amorphous LAS\longrightarrowhexagonal LiAl(SiO3)2\longrightarrow${\beta}$-spodumene. Lowering Li content in the gel enhanced densification and retarded the crystallization significantly. Optimum reaction conditions of LAS sol formation for thin coating applications were derived from rheological measurements, and these can be summarized as: H2O/total alkoxides molar ratio=4, pH=∼2.5, and aging time of ∼250h.

  • PDF

Characteristics of Alumina-Supported TiO2 Composite Ultrafiltration Membranes Prepared by the Sol-Gel Method (Sol-Gel 법으로 제조한 알루미나 담체의 $TiO_2$ 복합 한외여과막의 특성)

  • 현상훈;최영민
    • Journal of the Korean Ceramic Society
    • /
    • v.29 no.2
    • /
    • pp.107-118
    • /
    • 1992
  • Alumina supports for TiO2 ultrafiltration membrane coating were prepared by presintering disk-type preforms at 140$0^{\circ}C$. These supports showed uniform microstructures which had the apparent porosity of 40%, the pore size distribution in the range of 0.1~0.5${\mu}{\textrm}{m}$, and the water flux of 1400ι/$m^2$.h at the pressure difference of 10 atm. The optimum pH and concentration of the TiO2 sol for coating were 0.8 and 1.0 wt%, respectively, and sol particles were identified as rutile forms of 20 nm size. Crack-free alumina-supported rutile TiO2 membranes could be prepared through well controlled drying and heating the gel layer coated by the sol-gel dipping. The pore size of the TiO2 membranes heat-treated at 50$0^{\circ}C$ for 2 hrs was 30~80$\AA$, and their thickness varied from 1.1 to 3.8 ${\mu}{\textrm}{m}$ in accordence with the dipping time (4~40 min). The flux of water through this composite membrane at 10 atm was found to be in the range from 800 to 1100ι/$m^2$.hr depending on the dipping time (10~40 min). The membrane thickness increased linearly with the square root of the dipping time and the slope was 0.62 ${\mu}{\textrm}{m}$/{{{{ SQRT { min} }}.

  • PDF

Fabrication of Sb-doped $SnO_2$ transparent conducting films by sol-gel dip coating and their characteristics (솔-젤 Dip Coating에 의한 Sb-doped $SnO_2$ 투명전도막의 제조 및 특성)

  • 임태영;오근호
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.13 no.5
    • /
    • pp.241-246
    • /
    • 2003
  • The transparent conducting thin film of ATO (antimony-doped tin oxide) was successfully fabricated on$SiO_2$/glass substrate by a sol-gel dip coating method. The crystalline phase of the ATO thin film was identified as SnO$_2$ major phase and the film thickness was about 100 nm/layer at the withdrawal speed of 50 mm/minute. Optical transmittance and electrical resistivity of the 400 nm-thick ATO thin film which was annealed under nitrogen atmosphere were 84% and $5.0\times 10^{-3}\Omega \textrm{cm}$, respectively. It was found that the $SiO_2$ layer inhibited Na ion diffusion and the formation of impurities like $Na_2SnO_3$ or SnO while increasing Sb ion concentration and higher ratio of $Sb^{5+}/Sb^{3+}$in the film. Annealing at nitrogen atmosphere leads to the reduction of $Sn^{4+}$ as well as $Sb^{5+}$ resulting in decrease of the electrical resistivity of the film.

Fabrication of PZT Film by a Single-Step Spin Coating Process

  • Oh, Seung-Min;Kang, Min-Gyu;Do, Young-Ho;Kang, Chong-Yun;Nahm, Sahn;Yoon, Seok-Jin
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.193-193
    • /
    • 2011
  • To obtain ceramic films, the sol-gel coating technique has been broadly used with heat treatment, but crack formation tend to occur during heat treatment in thick sol-gel films. We prepared PZT thin films by sol-gel method with single-step spin coating process. The PZT solution have been synthesized using lead acetate ($Pb(CH_3COO)_2$), zirconium acetylacetonate ($Zr(OC_3H_7^n)_4$), and titanium diisopropoxide bis(acetylacetonate) 75wt% in isopropanol ($Ti(OC_3H_7^i)_2(OC_3H_7^n)_2$) as starting materials and n-propanol was selected as a solvent. The poly(vynilpyrrolidone) (PVP) was added with 0, 0.25, 0.5, 0.75, and 1 molar ratios to control viscosity of solution. We investigated influence of the viscosity on thickness, microstructure, and electrical properties of final PZT films. Thermo-gravimetric analysis and differential scanning calorimeter (TGA/DSC) was carried out from room temperature to $800^{\circ}C$ in order to measure pyrolysis temperature. Structural characteristics were analyzed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). Ferroelectric and dielectric properties were measured by RT66A (Radiant) and impedance analyzer (Agilent), respectively. The thicknesses of PZT films depended on incorporation of an excess amount of PVP. Finally, we obtained PZT films of good quality without crack formation via single-step spin coating.

  • PDF

Hydrophillic and Hydrophobic Properties of Sol-Gel Processed Sillica Coating Layers

  • Kim, Eun-Kyeong;Lee, Chul-Sung;Hwang, Tae-Jin;Kim, Sang-Sub
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.02a
    • /
    • pp.505-505
    • /
    • 2011
  • The control of wettability of thin films is of great importance and its success surely brings us huge applications such as self-cleaning, antifogging and bio-passive treatments. Usually, the control is accomplished by modifying either surface energy or surface topography of films. In general, hydrophobic surface can be produced by coating low surface energy materials such as fluoropolymer or by increasing surface roughness. In contrast, to enhance the hydrophillicity of solid surfaces, high surface energy and smoothness are required. Silica (SiO2) is environmentally safe, harmless to human body and excellently inert to most chemicals. Also its chemical composition is made up of the most abundant elements on the earth's crest, which means that SiO2 is inherently economical in synthesis. Moreover, modification in chemistry of SiO2 into various inorganic-organic hybrid materials and synthesis of films are easily undertaken with the sol-gel process. The contact angle of water on a flat silica surface on which the Young's equation operates shows ~50o. This is a slightly hydrophilic surface. Many attempts have been made to enhance hydrophilicity of silica surfaces. In recent years, superhydrophilic and antireflective coatings of silica were fabricated from silica nanoparticles and polyelectrolytes via a layer-by-layer assembly and postcalcination treatment. This coating layer has a high transmittance value of 97.1% and a short water spread time to flat of <0.5 s, indicating that both antireflective and superhydrophilic functions were realized on the silica surfaces. In this study, we assessed hydrophillicity and hydrophobicity of silica coating layers that were synthesized using the sol-gel process. Systematic changes of processing parameters greatly influence their surface properties.

  • PDF

Structural and Dielectrical Properties of PZT(30/70)/PZT(70/30) Heterolayered Thin Film Prepared by Sol-Gel Method (Sol-Gel법으로 제작한 PZT(30/70)/PZT(70/30) 이종층 박막의 구조 및 유전특성)

  • Kim, Gyeong-Gyun;Jeong, Jang-Ho;Lee, Seong-Gap;Lee, Yeong-Hui
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.48 no.7
    • /
    • pp.514-520
    • /
    • 1999
  • Ferroelectric PZT(30/70)/PZT(70/30) heterolayered thin films were fabricated by spin-coating method on the $Pt/Ti/SiO_2Si$ substrate alternately using(30/70) and PZT(70/30) alkoxide solutions prepared by sol-coating method. The coating and heating procedure was repeated six times to form PZT heterolayered films, and thickness of the film obtained by one-times drying/sintering process was about 40-50 nm. All PZT heterolayered films, showed dense and homogeneous structure without the presence of rosette sturctrue. The relative dielectric constant, remanent polarization and leakage current density of PZT heterolayered films were superior to those of single composition PZT(30/70) and PZT(70/30) films, and those values for the PZT-6 film were 975, $21 \muC/cm^2\; and\; 8\times10^{-9}\; A/cm^2$, respectively. And the PZT-6 heterolayered film showed fairly good fatigue characteristics of remanent polarization and coercive field after application of $10^8$ switching cycles.

  • PDF

Characterization of Ceramic Composite-Membranes Prepared by TEOS-PEG Coating Sol (TEOS-PEG계 Sol-Gel코팅에 의한 세라믹 분리 막의 제조 및 특성)

  • Kim, Tae-Bong;Choi, Se-Young;Kim, Goo-Dae
    • Journal of the Korean Ceramic Society
    • /
    • v.42 no.3 s.274
    • /
    • pp.165-170
    • /
    • 2005
  • Sol-gel methods offer many advantages over conventional slip-casting, including the ability to produce ceramic membranes. They are purer, more homogeneous, more reactive and contain a wider variety of compositions. We produced ormosil sol using sol-gel process under various molecular weight of polymer species[polyethylene glycol(PEG)] in total system [Tetraethyl ortho silicate(TEOS)-polyethylene glycol(PEG)]. The properties of as-prepared ormosil sol such as viscosity and gelation time are characterized. Also, the ceramic membrane was prepared by dip-coating with synthetic sol and its microstructure was observed by scanning electron microscopy. The permeability and rejection efficiency of membrane for oil/water emulsion were evaluated as cross­flow apparatus. The ormosil sol coated membrane was easily formed by steric effect of polymer and it improved flux efficiency because infiltration into porous support decreased. Its flux efficiency was elevated about $200\;l/m^2h$ compared with colloidal sol coated membrane at point of five minutes from starting test.

Anti-Fogging, Photocatalytic and Self-Cleaning Properties of TiO2-Transparent Coating

  • Mavengere, Shielah;Kim, Jung-Sik
    • Korean Journal of Materials Research
    • /
    • v.31 no.1
    • /
    • pp.8-15
    • /
    • 2021
  • Transparent, photocatalytic, and self-cleaning TiO2 thin film is developed by TiO2 sol-gel coating on glass and polycarbonate (PC) substrates. Acetyl acetone (AcAc) suppresses the precipitation of TiO2 by forming a yellowish (complex) transparent sol-gel. XPS analysis confirms the presence of Ti2p and O1s in the thin films on glass and PC substrates. The TiO2-sol is prepared by stabilizing titanium (IV) isopropoxide (TTIP) with diethylamine and methyl alcohol. The addition of AcAcsilane coupling solution to the TiO2-sol instantaneously turns to yellowish color owing to the complexing of titanium with AcAc. The AcAc solution substantially improves the photocatalytic property of the TiO2 coating layer in MB solutions. The coated TiO2 film exhibits super hydrophilicity without and with light irradiation. The TiO2 thin film stabilized by adding 8.7 wt% AcAc shows the highest photo-degradation for methylene blue (MB) solution under UV light irradiation. Also, the optimum photocatalytic activity is obtained for the 8.7 wt% AcAc-stabilized TiO2 coating layer calcined at 450 ℃. The thin-films on glass exhibit fast self-cleaning from oleic acid contamination within 45 min of UV-light irradiation. The appropriate curing time at 140 ℃ improves the anti-fogging and thermal stability of the TiO2 film coated on PC substrate. The watermark-free PC substrate is particularly beneficial to combat fogging problems of transparent substrates.

Preparation of$SnO_2$-based gas sensor by Sol-Gel process

  • Bui, Anh-Hoa;Baek, Won-Woo;Lee, Sang-Tae;Jun, Hee-Kwon;Lee, Duk-Dong;Huh, Jeung-Soo
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.135-135
    • /
    • 2003
  • This paper presents the preparation of SnO$_2$ films by Sol-Gel process and using spin coating method, and their sensing properties in CO gas. Experimental procedure consisted of following steps: (1) Tin chloride(SnCl$_4$) and Ammonium hydrogen carbonate (NH$_4$HCO$_3$) were used as precursors; (2) the Sol solution with concentration of about 10wt% SnO$_2$ was prepared from washed Gel-precipitate for spin coating step; (3) thereafter, the coating solution was dropped onto the alumina (Al$_2$O$_3$) substrate that was then spun, the spin coating was carried out with total 10 times; (4) finally, the films were calcined for 3 hours at 50$0^{\circ}C$ or higher temperature (600, 700, 800 or 90$0^{\circ}C$) in order to obtain various gram sizes. The average grain size was calculated by Scherrer's equation using main peaks in XRD spectra; meanwhile the thickness, microstructure and surface morphology of the films were observed by FE-SEM.

  • PDF