• Title/Summary/Keyword: Soil washing with water

Search Result 96, Processing Time 0.033 seconds

Treatment Cost Comparison and Development of Sustainability Indices for Microwave Soil Remediation of TPHs(Total Petroleum Hydrocarbons)

  • Kim, Dong Uk;Koo, Ja-Kong
    • Journal of Soil and Groundwater Environment
    • /
    • v.20 no.5
    • /
    • pp.11-15
    • /
    • 2015
  • The three processes of 1) high- & low-temperature microwave heatings, 2) the soil washing, and 3) the thermal desorption processes in soil remediation are analysed on the treatment cost data for 2003-2012 years. The cost of microwave heating method with at temperature 500-700℃, for 30 minutes, and at 4-6 kW is approximately 10 $/ton (13,000 ₩) due to the deep through heating of micro-wave, the soil washing with chemicals is about 80 $/ton (85,000 ₩) due to the chemicals & duration, and the thermal desorption process is around 40 $/ton (41,000 ₩) from the less efficiency. Furthermore the sustainability has been assessed, and suggestions are made. 1) Green; the minimal environmental footprint, 2) Growth; the least cost, 3) Shared; the social & environmental justice, 4) Smart; the microwave characteristics of deep through irradiation & heating, and 5) Mutuality; the flexibility of the technology. More additives including water, the government support, and public relation are suggested realizing the microwave in this condition is not harmful to human beings.

Washing Efficiency of Drum Washing Machine Using Steam Jet System (스팀분사 방식을 사용한 스팀 드럼세탁의 세탁성능)

  • Jung, Sun-Young;Jang, Jeong-Dae;Park, Seok-Kyu;Jeong, Seong-Hae
    • Fashion & Textile Research Journal
    • /
    • v.8 no.1
    • /
    • pp.134-138
    • /
    • 2006
  • The washing efficiency of two types of washing machine- drum(drum washing) and drum using steam jet system(steam drum washing) was studied. The purpose of this paper is to clarify the performance of new steam drum washing. The relationship between washing temperature and washing efficiency(reflectance(%)) by soil removal, and that between washing temperature and electric energy consumption, Fabric damage evaluated by Danish wear method, Fabric shrinkage(%) during laundering were investigated, and compared with those in drum washing machine. Washing efficiency of steam drum washing according to washing temperature is better than that of drum washing. Electric energy consumption and fabric damage in steam drum washing are lower than those of drum washing. Fabric damage increased as washing temperature increased. Shrinkage of fabrics in steam drum washing and drum washing are about same. Therefore, we assumed that in the case of steam drum washing using steam jet system, washing efficiency remarkably increased, and fabric damage decreased, even with a lot of saving in given electric energy and water used.

Remediation Design Using Soil Washing and Soil Improvement Method for As Contaminated Soils and Stream Deposits Around an Abandoned Mine (토양 세척법과 석회를 첨가한 토양 안정화 공법을 이용한 폐광산 주변 비소 오염 토양 및 하천 퇴적토 복원)

  • 이민희;이정산;차종철;최정찬;이정민
    • Economic and Environmental Geology
    • /
    • v.37 no.1
    • /
    • pp.121-131
    • /
    • 2004
  • Removal efficiencies of soil washing and soil improvement processes to remediate farmland soils and stream deposits around Goro abandoned mine were investigated with batch and column experiments. For As-contaminated farm-land soils around Goro mine, batch tests to quantify As extraction rate from contaminated soils and lime treated contaminated soils were performed. The contaminated soil mixed with lime decreased As extraction rate less than one fourth, suggesting that the soil improvement method mixed with lime dramatically decrease As extraction rate. A storage dam will be constructed in the lower part of the main stream connected to Goro abandoned mine and the amount of As extracted from the bottom soils of reservoir could be the main source to contaminate water of reservoir. The decrease of As extraction amount from the bottom in reservoir, caused by the application of the soil improvement method was investigated from the physically simulated column experiment and results showed that As extraction rate decreased to one forty when 1% lime mixed soil improvement was applied to contaminated soils. For contaminated stream deposits connected Goro mine, the removal efficiency of the soil washing method was investigated with batch experiments. Hydrochloric acid, citric acid, acetic acid and distilled water were used as soil washing solution and 0.01, 0.05, 0.1, 0.5, 1.0 N of washing solution were applied to extract As. When washing with 0.05 N of hydrochloric acid or citric acid, more than 99.9% of As was removed from stream deposits, suggesting that As contaminated stream deposits around Goro mine be successfully remediated with the soil washing process. Total volumes of contaminated soils and deposits needed for remediation were calculated based on three different reme-diation target concentrations and the operation cost of soil washing for calculated soil volumes was estimated. Results from this research could be directly used to make a comprehensive countermeasure to remediate contaminated area around Goro mine and also many contaminated areas similar to this research area.

Effect of Washing Solution Characteristics on the Removal and Color of Cocoa Stains (세탁용수의 특성에 따른 코코아 오구의 세척성과 색상)

  • Chung, Hae-Won;Kim, Hyo-Jeong
    • Fashion & Textile Research Journal
    • /
    • v.14 no.3
    • /
    • pp.492-500
    • /
    • 2012
  • Cocoa is a popular drink for children and contains healthy polyphenols however; a deep brown stain is left when cocoa is spilled over clothes. The main pigments in cocoa are anthocyanins that change in washing solutions with different alkalinity and metals. The removal and color changes in a cocoa stain after washing with various pH solutions and water hardness were studied. Alkalinity and the water hardness of washing solutions were important factors for the removal of cocoa stains. The removal of cocoa things in washing solutions without detergent was low (and even became negative after removal and darker) in solutions with a pH 9 and above. The cocoa stain was not removed and only the fabric color faded, although the cocoa stained cloth was washed with Korea tap water that has a pH of 7. The cocoa stain removal in detergent solutions was conspicuously higher than for only water. Even in detergent solutions, the cocoa stain removal decreased as water hardness increased. Cocoa stain removal was more effective and the color dimmest when the stained cloth was washed in a solution without the metal cations, and the bleach added with the detergent at a temperature of $40^{\circ}C$ and for longer than 20 minutes. Effective and economical equipment for tap water softening for a washing machine should be developed and used to improve cocoa stain removal.

Removal of Organic Load from Olive Washing Water by an Aerated Submerged Biofilter and Profiling of the Bacterial Community Involved in the Process

  • Pozo, Clementina;Rodelas, Belen;Martinez-Toledo, M. Victoria;Vilchez, Ramiro;Gonzalez-Lopez, Jesus
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.784-791
    • /
    • 2007
  • The present work aims to use a biofilter technology(aerated submerged filters) for the aerobic transformation at laboratory-scale of olive washing water(OWW) generated in the first steps of olive oil processing, as well as the genetic profiling and identification to the species level of the bacteria involved in the formation of the biofilm, by means of TGGE. Chemical parameters, such as biological oxygen demand at five days($BOD_5$) and chemical oxygen demand(COD), decreased markedly(up to 90 and 85%, respectively) by the biological treatment, and the efficiency of the process was significantly affected by aeration and inlet flow rates. The total polyphenol content of inlet OWW was only moderately reduced(around 50% decrease of the inlet content) after the biofilter treatment, under the conditions tested. Partial 16S rRNA genes were amplified using total DNA extracted from the biofilm and separated by TGGE. Sequences of isolated bands were mostly affiliated to the $\alpha-subclass$ of Proteobacteria, and often branched in the periphery of bacteria] genera commonly present in soil(Rhizobium, Reichenowia, Agrobacterium, and Sphingomonas). The data obtained by the experimentation at laboratory scale provided results that support the suitability of the submerged filter technology for the treatment of olive washing waters with the purpose of its reutilization.

Extraction of Total Petroleum Hydracabons from Petroleum Oil-Contaminated Sandy Soil by Soil Washing (토양 세척법에 의한 유류오염 사질토양의 TPH 추출 효율 평가)

  • Lee, Cha-Dol;Yoo, Jong-Chan;Yang, Jung-Seok;Kong, Jun;Baek, Kitae
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.7
    • /
    • pp.18-24
    • /
    • 2013
  • The influences of various operating parameters on physico-chemical techniques were evaluated to remediate petroleum-contaminated sandy soil including S/L ratio, kinetic, and effect of soil particle size. The simple extraction using tap water removed only 20.6% of total petroleum hydrocarbon (TPH), and addition of NaOH enhanced the removal of TPH to approximately 30%. To meet the regulation levels, a surfactant, sodium dodecyl sulfate, was added, and the removal of TPH increased to 4 times. Probably, the carbonate minerals affected chemical aging and soprtion of petroleum, which inhibited the extraction of TPH. The soil with smaller particle size contained more TPH, and the removal of TPH was obstructed with smaller particle size. However, NaOH addition increased the removal of TPH in the smaller particles. The physico-chemical properties of soil influenced greatly the removal of petroleum even in sandy soil.

A Study on the Full-scale Soil Washing Process Improved by Multi-stage Continuous Desorption and Agitational Desorption Techniques to Remediate Petroleum-contaminated Soils (현장규모의 유류오염토양 세척공법에 다단연속탈착 및 교반탈착기법을 이용한 세척공정 성능향상에 관한 연구)

  • Seo, Yong-Sik;Choi, Sang-Il;Jang, Min
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.5
    • /
    • pp.81-87
    • /
    • 2008
  • In accompany with the transfer of US army bases, recent surveys reported serious contamination of soils by the release of petroleum from storage facilities and heavy metals accumulated in rifle-ranges. These problems have made an increased concerns of cleanup technology for contaminated soils. In this study, a full-scale soil washing process improved by multistage continuous desorption and agitational desorption techniques was examined for petroleum-contaminated soils obtained from three different remedial sites that contained 29.3, 16.6, and 7.8% of silt and clay, respectively. The initial concentrations of total petroleum hydrocarbon (TPH) were 5,183, 2,560, and 4,860 mg/kg for each soil. Pure water was applied to operate washing process, in which water used for washing process was recycled 100% for over 6 months. The results of full-scale washing tests showed that the TPH concentrations for soils (> 3.0 mm) were 50${\sim}$356 mg/kg (85.2${\sim}$98.2% removal rates), regardless of the contents of silt and clay from in A, B and C soil, when the soils were washed at 3.0 kg/$cm^2$ of injection pressure with the method of wet particle separation. Based on the initial TPH concentration, the TPH removal rates for each site were 85.2, 98.2 and 89.9%. For soils in the range of 3.0${\sim}$0.075 mm, the application of first-stage desorption technique as a physical method resulted 834, 1,110, and 1,460 mg/kg of TPH concentrations for each soil, also additional multi-stage continuous desorption reduced the TPH concentration to 330, 385, and 245 mg/kg that were equivalent to 92.4, 90.6, and 90.1% removal rates, respectively. The result of multi-stage continuous desorption for fine soil (0.075${\sim}$0.053 mm) were 791, 885, and 1,560 mg/kg, and additional agitation desorption showed 428, 440, and, 358 mg/kg of TPH concentrations. Compared with initial concentration, the removal rates were 92.0, 93.9 and 92.9%, respectively. These results implied we could apply strategic process of soil washing for varies types of contaminated soils to meet the regulatory limit of TPH.

A Study on the Washability and Washing Conditions of the Industrial Alkaline Laundry Detergent Suitable for Water Discharge Standards and Detergent Regulations (수질 배출기준 및 세제 안전기준에 적합한 산업용 알칼리 세탁세제의 세척성과 세탁조건 연구)

  • Song, Hyunjoo;Song, Sunhye
    • Textile Coloration and Finishing
    • /
    • v.33 no.4
    • /
    • pp.250-257
    • /
    • 2021
  • Laundry industry has traditionally been considered an industry that generates large amounts of wastewater and Volatile Organic Compounds(VOCs). This is still the case until now. Household laundry detergents are produced and distributed within the safety regulations on the amount of harmful substances detected. While industrial laundry detergents are often distributed without safety regulations, and even laundry workers manufacture and use them on their own. This contaminates water and air and also threatens the safety of workers. This study is a basic study for distributing eco-friendly detergents(EFD-A) developed through previous studies to the laundry industry. Safety, washability and wastewater quality of EFD-A are evaluated. Three existing commercial detergents(PD1, PD2, LD4) are also evaluated to compare with EFD-A. The safety of detergents is confirmed by the content of optical brightener, VOCs, and arsenic. Washability is evaluated by the difference in reflectance of washed and unwashed artificial soiled fabrics according to detergent concentration, washing temperature, and washing time. TOC is used as the index of assessing the wastewater quality. The results are as follows; EFD-A doesn't contain the optical brighteners, VOCs, and arsenic. The optimal washing conditions for EFD-A are 3 g/L concentration, 40 ℃ washing temperature, and 30 min washing time. The soil removal efficiency is about 71 %, which was similar to or somewhat superior to that of PD1, PD2, and LD4. TOC is 63.5 %, which is about 15 % lower than the discharge limit. Through this study, the developed detergent EFD-A can be used as a safe and eco-friendly detergent for the human body and the environment.

Effect of Water-Thoroughly-Rinsing in the Artificially Metal-Contaminated Soil Preparation on Final Soil Metal Concentrations (인위적 중금속 오염 토양 제조과정에서 최종 세척과정이 중금속 토양 농도에 미치는 영향 연구)

  • Hur, Jeong-Hyun;Jeong, Seung-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.33 no.9
    • /
    • pp.670-676
    • /
    • 2011
  • Artificially metal-contaminated soils have been widely used for lab-scale soil washing and soil toxicity experiments. The artificial soil contamination methods consist of 1) first equilibrating soils with heavy metal solution, 2) filtrating or centrifuging soils from the mixture and 3) finally drying the soils. However, some of those artificially contaminated soil experiments have not clearly shown that the soils were thoroughly rinsed with water prior to conducting experiments. This study investigated the amount of heavy metal release from the artificially metal-contaminated soil by pre-water-rinsing. Three different artificially metal-contaminated soil preparation methods were first evaluated with Cd and Pb concentrations of soil. Then, this study investigated the effect of pre-water-rinsing on the Cd and Pb concentration of the artificially contaminated soil. Heavy metal concentrations of the soil produced by equilibrating and drying the metal solution-soil were significantly reduced by pre-water-rinsing. The results of the study implied that experimental results would be significantly distorted when the artificially heavy metal-contaminated soils were not thoroughly water-rinsed prior to conducting experiments. Therefore, the initial heavy metal concentration of the artificially contaminated soil should be determined after thoroughly rinsing the soil that was previously obtained through the adsorption and dry stages.

Advanced separation techniques for treatment of soil contaminated with heavy metals (중금속 오염 토양의 고도 선별 정화(복원)기술)

  • Lee, Hyo-Suk;Chae, Yeong-Bae
    • Journal of the Korean Professional Engineers Association
    • /
    • v.41 no.3
    • /
    • pp.24-29
    • /
    • 2008
  • Recently, the serious problems have been occurred due to the contaminated sites with heavy metals are increasing. There are several remediation technologies of the metal contaminated soil such as physical separation, washing with water or acid, biologically, electrically. Pytoremediation, ultrasonic etc. Among these technologies the physical separation can be put in a good option to solve the metal contaminated soil economically and environmental friendly. Because this technology has been already commercially certificated in the mineral processing field for a long time.

  • PDF