Browse > Article

Removal of Organic Load from Olive Washing Water by an Aerated Submerged Biofilter and Profiling of the Bacterial Community Involved in the Process  

Pozo, Clementina (Institute of Water Research, University of Granada)
Rodelas, Belen (Faculty of Pharmacy, University of Granada, Campus Universitario de Cartuja)
Martinez-Toledo, M. Victoria (Institute of Water Research, University of Granada)
Vilchez, Ramiro (Institute of Water Research, University of Granada)
Gonzalez-Lopez, Jesus (Institute of Water Research, University of Granada)
Publication Information
Journal of Microbiology and Biotechnology / v.17, no.5, 2007 , pp. 784-791 More about this Journal
Abstract
The present work aims to use a biofilter technology(aerated submerged filters) for the aerobic transformation at laboratory-scale of olive washing water(OWW) generated in the first steps of olive oil processing, as well as the genetic profiling and identification to the species level of the bacteria involved in the formation of the biofilm, by means of TGGE. Chemical parameters, such as biological oxygen demand at five days($BOD_5$) and chemical oxygen demand(COD), decreased markedly(up to 90 and 85%, respectively) by the biological treatment, and the efficiency of the process was significantly affected by aeration and inlet flow rates. The total polyphenol content of inlet OWW was only moderately reduced(around 50% decrease of the inlet content) after the biofilter treatment, under the conditions tested. Partial 16S rRNA genes were amplified using total DNA extracted from the biofilm and separated by TGGE. Sequences of isolated bands were mostly affiliated to the $\alpha-subclass$ of Proteobacteria, and often branched in the periphery of bacteria] genera commonly present in soil(Rhizobium, Reichenowia, Agrobacterium, and Sphingomonas). The data obtained by the experimentation at laboratory scale provided results that support the suitability of the submerged filter technology for the treatment of olive washing waters with the purpose of its reutilization.
Keywords
Olive washing water(OWW); aerated biofilter; TGGE; soil bacteria;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
Times Cited By Web Of Science : 5  (Related Records In Web of Science)
연도 인용수 순위
1 Altschul, S. F., T. L. Madden, A. A. Schaeffer, J. Zhang, Z. Zhang, W. Miller, and D. J. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acid Res. 25: 3389-3402   DOI
2 Borja, R., J. Alba, A. Martin, and A. Mancha. 1998. Effect of organic loading rate on anaerobic digestion process of wastewater from the washing of olives prior to the oil production process in a fluidized bed reactor. Grasas Aceites 49: 42-49   DOI   ScienceOn
3 FIA, Fundacion para la Innovacion Agraria. 2002. Mayor calidad del aceite de oliva ($2^a$ parte). Boletin Olivicola 9: 2
4 Henckel, T., U. Jackel, S. Schenll, and R. Conrad. 2000. Molecular analysis of novel methanotrophic communities in forest soil that oxidize atmospheric methane. Appl. Environ. Microbiol. 66: 1801-1808   DOI   ScienceOn
5 Jeanmougin, F., J. D. Thompson, M. Gouy, D. G. Higgins, and T. J. Gibson. 1998. Multiple sequence alignment with Clustal X. Trends Biochem. Sci. 23: 403-405   DOI   ScienceOn
6 Kanaly, R. A. and S. Harayama. 2000. Biodegradation of high molecular weight polycyclic aromatic hydrocarbons by bacteria. J. Bacteriol. 182: 2059-2067   DOI   ScienceOn
7 White, D. C., S. Sutton, and D. Ringelberg. 1995. The genus Sphingomonas: Physiology and ecology. Curr. Opin. Biotechnol. 7: 301-306   DOI   ScienceOn
8 Borja, R., J. Alba, S. E. Garrido, L. Martinez, M. P. Garcia, M. Monteoliva, and A. Ramos-Cormenzana. 1995. Effect of aerobic pretreatment with Aspergillus terreus on the anaerobic digestion of olive-mill wastewater. Biotechnol. Appl. Biochem. 22: 233-246
9 Ronchero, A. V., R. M. Duran, and E. G. Constante. 1974. Componentes fenolicos de la aceituna. II. Polifenoles del alpechin. Grasas Aceites 25: 259-261
10 De Filippi, L. J. and S. Lupton. 1998. Introduction to microbiological degradation of aqueous waste and its application using a fixed-film reactor, pp. 1-34. In Lewandowski, G. A. and L. J. De Filippi. (eds.), Biological Treatments of Hazardous Wastewaters. Wiley, New York
11 Mantzavinos, D. and N. Kalogerakis. 2005. Treatment of olive mill effluents. Part I. Organic matter degradation by chemical and biological processes - an overview. Environ. Int. 31: 289-295   DOI   ScienceOn
12 Watanabe, K., S. Yamamoto, S. Hino, and S. Harayama. 1998. Population dynamics of phenol degrading bacteria in activated sludge determined by gyrB-targeted quantitative PCR. Appl. Environ. Microbiol. 64: 1203-1209
13 Harayama, S., Y. Kasai, and A. Hara. 2004. Microbial communities in oil-contaminated seawater. Curr. Opin. Biotechnol. 15: 205-214   DOI   ScienceOn
14 Mameri, N., F. Halet, M. Drouiche, H. Grib, H. Lounici, A. Pauss, D. Piron, and D. Belhocine. 2000. Treatment of olive mill washing water by ultrafiltration. Can. J. Chem. Eng. 78: 590-595
15 Parke, D., F. Rynne, and A. Glenn. 1991. Regulation of phenolic catabolism in Rhizobium leguminosarum biovar trifolii. J. Bacteriol. 173: 5546-5550   DOI
16 Romine, M. T, L. C. Stillwell, K. K. Wong, S. J. Thurston, E. C. Sisk, C. Sensen, T. Gaasterland, J. K. Fredrickson, and J. D. Saffer. 1999. Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol. 181: 1585-1602
17 Bond, P. L., R. Erhart, M. Wagner, J. Keller, and L. L. Blackall. 1999. Identification of some of the major groups of bacteria in efficient and non efficient biological phosphorous removal activated sludge systems. Appl. Environ. Microbiol. 65: 4077-4084
18 Di Gioia, D., C. Barberio, S. Spagnesi, L. Marchetti, and F. Fava. 2002. Characterization of four olive mill wastewater indigenous bacterial strains capable of aerobically degrading hydroxylated and methoxylated monocyclic aromatic compounds. Arch. Microbiol. 178: 208-217   DOI   ScienceOn
19 Ohta, H., R. Hattori, Y. Ushiba, H. Mitsui, M. Ito, H. Watanabe, A. Tonosaki, and T. Hattori. 2004. Sphingomonas oligophenolica sp. Nov., a halo- and organo-sensitive oligotrophic bacterium from paddy soil that degrades phenolic acids at low concentrations. Int. J. Syst. Evol. Microbiol. 54: 2185-2190   DOI   ScienceOn
20 Cortes-Lorenzo, C., M. L. Molina-Munoz, B. Gomez-Villalba, R. Vílchez, A. Ramos, B. Rodelas, E. Hontoria, and J. Gonzalez-Lopez. 2006. Analysis of community composition of biofilms in a submerged filter system for the removal of ammonia and phenol from an industrial wastewater. Biochem. Soc. Trans. 34: 165-168   DOI   ScienceOn
21 Decho, A. W. 2000. Microbial biofilms in intertidal systems: An overview. Cont. Shelf Res. 20: 1257-1273   DOI   ScienceOn
22 Jang, A., M. Bum, S. Y. Kim, Y. H. Ahn, I. S. Kim, and P. L. Bishop. 2005. Assessment of characteristcs of biofilm formed on autotrophic denitrification. J. Microbiol. Biotechnol. 15: 455-460   과학기술학회마을
23 Kumar, S., K. Tamura, I. B. Jakobsen, and M. Nei. 2001. MEGA2: Molecular Evolutionary Genetics Analysis software, Arizona State University, Tempe, Arizona, U.S.A
24 Raposo, F., R. Borja, E. Sanchez, M. A. Martin, and A. Martin. 2004. Performance and kinetic evaluation of the anaerobic digestion of two-phase olive mill effluents in reactors with suspended and immobilized biomass. Water Res. 3: 2017-2026
25 Weisburg, W. G., S. M. Barns, D. A. Pelletier, and D. J. Lane. 1991. 16S ribosomal DNA amplification for phylogenetic study. J. Bacteriol. 173: 697-703   DOI
26 Bertin, L., M. Majone, D. Di Gioia, and F. Fava. 2001. An aerobic fixed-phase biofilm reactor system for the degradation of the low-molecular weight aromatic compounds occurring in the effluents of anaerobic digestors treating olive mill wastewaters. J. Biotechnol. 87: 161-177   DOI   ScienceOn
27 Hamdi, M. and R. Ellouz. 1993. Treatment of detoxified olive mill wastewaters by anaerobic filter and aerobic fluidized bed process. Environ. Technol. 14: 183-188   DOI   ScienceOn
28 Ehaliotis, C., K. Papadopolou, M. Kotsou, I. Mari, and G. Balis. 1999. Adaptation and population dynamics of Azotobacter vinelandii during aerobic biological treatment of olive-mill wastewater. FEMS Microbiol. Ecol. 30: 301- 311   DOI   ScienceOn
29 APHA, AWWA, WEF. 2001. Standard Methods for the Examination of Water and Wastewater, 20th Ed. American Public Health Association, Washington, DC, U.S.A
30 Sandaa, R., V. Torsvik, O. Enger, F. L. Daae, T. Castberg, and D. Hahn. 1999. Analysis of bacterial communities in heavy metal contaminated soils at different levels of resolutions. FEMS Microbiol. Ecol. 30: 237-251   DOI   ScienceOn
31 Watanabe, K. 2001. Microorganisms relevant to bioremediation. Curr. Opin. Biotech. 12: 237-241   DOI   ScienceOn
32 Gomez-Villalba, B., C. Calvo, R. Vilchez, J. Gonzalez- Lopez, and B. Rodelas. 2006. TGGE analysis of the diversity of ammonia-oxidizing and denitrifying bacteria in submerged filter biofilms for the treatment of urban wastewater. Appl. Microbiol. Biotechnol. 72: 393-400   DOI   ScienceOn
33 Muyzer, G., E. C. de Waal, and A. G. Uitterlinden. 1993. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction amplified genes coding for 16S RNA. Appl. Environ. Microbiol. 59: 695-700