• Title/Summary/Keyword: Soil type

Search Result 2,492, Processing Time 0.034 seconds

The Growth phase and yield difference of Kenaf(Hibiscus cannabinus L.) in reclaimed land according to the source and physical types of organic materials

  • Kang, Chan Ho;Lee, In Sok;Yoo, Young Jin;Seo, Sang Young;Choi, Kyu Hwan;Lee, Ki Kwon;Na, Young Eun
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.369-369
    • /
    • 2017
  • To improve the reclaimed land soil, we put organic materials (Chopped kenaf, decomposed rice hull, rice straw, pellet type manure compost) into reclaimed land for 3,000 kg per 10a. As a result, EC of reclaimed soil was lowered by 58% ($1.2dS/m{\rightarrow}0.5$), content of soil organic material was risen from 6.7 g/kg to 16.0 (1.4 fold ${\uparrow}$), porosity of soil was elevated from 1.57 % to 1.31 (16.6% ${\downarrow}$), soil hardness was reduced from 20.2 mm to 17.9 (11.4% ${\downarrow}$) and plow layer soil was deepen from 19.8 cm to 26.8 (35% ${\uparrow}$). In the wake of physiochemical improvement of reclaimed soil, the growth phase of crops became better contrast to non-treatment. For example the plant height of Kenaf (Hibiscus cannabinus L.) cultivated in reclaimed land containing organic materials was lengthen by 18.8%. Especially, the improvment effect of pellet type manure compost and rice straw was more preferable. When the kenaf was cultivated in reclaimed land containing organic materials, the yield was become higher. The average yield of organic materials treatment was 9,218 kg/10a, and it was 2.1 times higher than non-treatment (4,368kg/10a). And the effective treatments to increase yields were pellet type manure compost (10,848 kg/10a, 148% ${\uparrow}$), rice straw (120% ${\uparrow}$) and chopped kenaf (95% ${\uparrow}$). To intensify the effect of physicochemical enhancement of reclaimed land soil and improving yields, we put into various physical types of organic materials (pellet type, liquid type, powdered type). The most effective organic materials type for enhancement of physicochemical properties (EC of reclaimed soil was lowered, content of soil organic material was risen, porosity of soil was elevated, soil hardness was reduced, plow layer soil was deepen) was pellet. And source to maintain better growth phase and get more yield were liquid and pellet types. When we used pellet type organic material, the plant height of kenaf was lengthen by 41% in comparison with non-treatment and yield was more than 122% more. And also liquid type could get more yield (by 127%) and growth phase (by 38%)

  • PDF

Laundering Factors in Soil Removal

  • Kadolph, Sara J.;Schofield-Tomschin, Sherryl A.;Kwon, Young-Ah
    • Fashion & Textile Research Journal
    • /
    • v.3 no.5
    • /
    • pp.455-465
    • /
    • 2001
  • Assessing soil removal is of interest to the washing machine industry because of government-mandated energy savings and changes in detergent formulation and consumer laundry practices. We designed this study to examine the laundry process from a holistic perspective by integrating factors perceived to be of importance. Our purpose was to assess the impact of selected variables (fabric and soil type, wash temperature and time. detergent amount, and degree of agitation) on soil removal using accelerated laundry conditions. We used the Taguchi method to develop the research design and ANOVA to analyze the data. Although soil removal was affected by fabric type, soil type, type and amount of detergent, degree of agitation, wash time and temperature, and water hardness and volume, wash temperature was the most significant variable.

  • PDF

A Case Study on Construction and Design of the Wedge Type Removable Soil Nailing System (쐐기형 제거식 쏘일 네일링 시스템의 설계 및 시공사례)

  • Han, Yeon-Jin;Park, Si-Sam;Kwon, Hyuk-Jun;Kim, Hong-Taek;Park, Ju-Seok
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.03a
    • /
    • pp.240-247
    • /
    • 2010
  • The soil nailing system is becoming common as reinforcement method of slope face in soil. It has application to obtain slope stability method and scaffolding system. It has some troubles when the soil nailing system is applied to the downtown because it could be invaded someone's private area. Thus, in this paper, wedge type removable soil nailing system which can easily remove deformed bar in final excavation step is developed. Field pull-out test is performed to evaluate deformed bars removal and pullout resistance characteristics. According to this result, application of Wedge Type Removable Soil Nailing System is performed.

  • PDF

Comparison of Tillage and Loads Characteristics of Three Types of Rotavators: Rotary-type, Crank-type, and Plow-type

  • Kim, Myoung-Ho;Nam, Ju-Seok;Kim, Dae-Cheol
    • Journal of Biosystems Engineering
    • /
    • v.38 no.2
    • /
    • pp.73-80
    • /
    • 2013
  • Purpose: This study was conducted to compare tillage and loads characteristics of three types of rotavators in farmland working condition of Korea. Methods: Tillage operations using three types of rotavators, i.e. rotary-type, crank-type and plow-type, were carried out in a dry field of Korea. The same prime mover tractor was used for driving three types of rotavators, and under several operational conditions, tillage characteristics such as actual working speed, rotavating depth, rotavating width, actual field capacity, flow of tilled soil, soil inversion ratio, and pulverizing ratio were measured. In addition, loads characteristics like torque and required power of Power Take-Off (PTO) shaft were calculated. Results: The average rotavating depth was smaller than the nominal value for all rotavators, and the difference was the greatest in the plow-type rotavator. Nevertheless, the plow-type rotavator showed the largest rotavating depth. The rotavating width was the same as the nominal value of all rotavators. The flow of tilled soil at the same operational conditions was the greatest in the plow-type rotavator and was the smallest in the rotary-type rotavator. In the most commonly used gear conditions of L2 and L3, the average soil pulverizing ratio was the greatest in the rotary-type rotavator, and followed by crank-type and plow-type rotavators in order. In the gear L2 and L3, the plow-type rotavator also had the lowest average soil inversion ratio while the rotary-type and crank-type rotavators had the same soil inversion ratio each other. The average torque and power of PTO shaft in the gear L2 and L3 were the highest in the plow-type rotavator. The load spectra of PTO shaft applying rain flow counting method and Smith-Waston-Topper equation to the measured torque showed that the modified torque amplitude was the greatest in the crank-type rotavator. This may come from the large torque fluctuation of crank-type rotavator during tillage operations. Conclusions: The three types of rotavators had different tillage and loads characteristics. The plow-type rotavator had the deepest rotavating depth, the smallest soil inversion ratio, the largest soil pulverizing ratio and required PTO power. Also, the crank-type rotavator showed a large torque fluctuation because of their unique operational mechanism. This study will help the farmers choose a suitable type of rotavator for effective tillage operations.

Soil Mixtures and Depths Selection for Mat-Type Rooftop Greening (옥상녹화용 식생매트에 적합한 토양과 토심 선정)

  • Lee, Eun-Heui;Kang, Kyu-Yi;Shin, Sang-Hee;Nam, Mi-A;Lee, Kwang-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.8 no.4
    • /
    • pp.12-22
    • /
    • 2005
  • The purpose of this study is to select suitable planting base for the mat-type rooftop greening in order to popularize rooftop greening system easily. The experiment was conducted from 2004 June to 2005 May under several conditions; 4 soil depths under mats(2cm, 5cm, 10cm, 15cm), two soil mixtures(natural soil 80%+leaf mold 20%, artificial soil) and two light conditions(full sun place, 20% shaded place). In this experiment, 3 types of mats were used ; the herbaceous plants mat(11 plants inclusive of Lotus corniculatus L., Silene armeria L.), the lawn mat with Festica arundinacea and Sedum mat with Sedum kamtschaticum, Sedum sarmentosum, Sedum oryzifolium, Sedum middendorffianum. The result is as follows; in the mat-type rooftop greening, the herbaceous plants mat, lawn mat and sedum mat are the similar number of plant and effect of greening on soil depth 2cm, 5cm and 10cm, 15cm. So suitable soil depth of rooftop greening is 10cm for the load and economical factor. Thus the mat-type rooftop greening possible planting base depth of all 13cm as soil depth 10cm and mat depth 3cm. As soil mixtures, the number and growth of plants were better mat and 'natural soil 80% +leaf mold 20%' than mat and artificial soil. In herbaceous plants mat, Silene armeria L., Dianthus chinensis, Centaurea cyanus L., Lotus corniculatus L. are survival in full sun place and Silene armeria L., Dianthus chinensis, Centaurea cyanus L. are survival in 20% shaded place. In conclusion, selection of suitable soil mixtures and plants is possible extensive management rooftop greening with effect of continuous greening. The mat-type rooftop greening are lightweight and simple preparation without management and can popularize readily.

Estimation of Characteristic of the Soil Physical using the Pipe Type Soil Sampler (원관형 토양샘플러를 이용한 토양물리특성 추정)

  • Ryu, Ji Hyun;Jung, Myung Kwan;Park, Seung Ki
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.95-104
    • /
    • 2020
  • The purpose of this study is to develop a pipe type soil sampler that can easily collect soil cross section servey and soil samples to conduct ecological environment surveys while minimizing ecological disturbance in the area subject to soil survey. Furthermore, this study develop the exponential type estimation specific weight formula (ESWF) that uses pipe type soil sampler to easily carry out soil cross section survey and soil sample while estimating the specific weight of the area using water content and soil sample length variation ratio (SLVRs) and to obtain apparent specific gravity, hardness, and max. porosity which are used as growth of corps and ecological environment index. The calibration results of ESWF showed a high degree of significance, with NSE for actual specific weight (γ0) and calibration estimation specific weight (γec) 0.95, R2 for 0.954, and RMSE for 0.051. The verification results of ESWF showed a high significance, with NSE for actual specific weight (γ0) and verification estimation specific weight (γev) 0.881, R2 for 0.978, and RMSE for 0.055.

Effects of Ground Improvement Depending on the Type of Soil by Compaction Grouting System (토질의 종류에 따른 CGS공법의 지반개량효과에 관한 연구)

  • Chun, Byung-Sik
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.3
    • /
    • pp.211-220
    • /
    • 2002
  • CGS(Compaction Grouting System) is widely used in reinforcement of structural foundation and ground improvement in soft ground. But the effects of ground improvement depending on the type of soil must be studied in order to adopt in various soils (granular soil and cohesive soil). In this study, characteristics of ground improvement (the increase of N value, increase in unit weight, vertical displacement on the ground surface) by CGS method was compared through two cases that were performed in granular and cohesive soil. The results show that the closer to the grout hole, the more increase in N value and this trend appear distinctly in granular soil. Unit weight of ground increase largely near by the grout hole and decrease in far from it independently of the soil type. The vertical displacement on the ground surface appeared in smaller area in case of granular soil than cohesive soil.

Construction of Environmentally Friendly Roadbed by Reinforecing Type Soil Solidification Agent (보강형 고화제를 이용한 친환경 도로노반조성 방안)

  • Koh, Yong-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.667-671
    • /
    • 2004
  • The purpose of this paper is to study on the construction of environmentally friendly roadbed by reinforcing type soil solidification agent. The soil amendment agent used in this study is friendly to the environment, and has a function of soil-cement-agent solidification. The soil amendment agent was admixed with reinforced fiber material for enhancement of strength and durability of roadbed. The project of trial field test of roadbed construction with special reinforcing soil treatment agent was performed in Gyunggido on December 2003. A series of field and laboratory experiments including unconfined compressive strength, permeability were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this reinforced solidifying agent. The results of this research showed that the roadbed using normal and poor soil could be efficiently constructed by treatment of this reinforcing type solidification agent admixed with fiber material.

  • PDF

A Study on Green Roofing Applied Artificial Soil Containing Recycled Materials - Focused on the Effects on the Growth of Plants by Difference of Soil Mixture Ratio - (재활용재료를 포함한 옥상녹화용 인공토양의 성능평가 - 토양배합비가 자생식물 생육에 미치는 영향을 중심으로 -)

  • Kim, Kyung-Hoon;Koh, Jeung-Hyun;Kim, Yong
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.5
    • /
    • pp.119-130
    • /
    • 2013
  • The objective of this study was to analyze an availability of green roof soil based on the bottom ash soil and compost using sludge derived from food factory as comparing and analysing the growth of native plants. Analysing the physical properties and chemical resistance of 12 different type mixing soils which is mainly used in green roof, selected 4 types of soil, experiments were conducted to compare plant growth. The growth status of the plant showed the most superior of the soil 13(control), next soil 9(Pearlite : Bottom Ash : Compost = 20 : 60 : 20) and soil 10(Pearlite : Zeolite : Compost = 60 : 20 : 20) This result showed that native plants grow well in the soil based on the bottom ash and compost using sludge derived from food factory, and this soil type is determined that is available the green roof soil.

Design and Application of Subsurface Drainage Devices for Multipurpose Farmland

  • Jeon, Jong Gil;Choi, Yong Hun;Kim, Min Young;Kim, Young Gjin
    • Journal of Biosystems Engineering
    • /
    • v.42 no.4
    • /
    • pp.265-275
    • /
    • 2017
  • Purpose: This study aims to identify the most stable boring shape among the circle, square, and inverted-triangle types in order to be applied to the development of a tractor-pulled underdrain boring device. Methods: The underdrain boring devices designed with the circle, inverted triangle, and square types were analyzed by numerical analysis, and they were evaluated by soil moisture and underground water level in the test field. Results: The results of the numerical analysis indicated that the increases in displacement, and strain when a uniform load is placed on the surface soil with soil weight were in the order of the inverted-triangle type, square type, and circle type. The soil moisture content and the underground water level after rainfall showed the largest difference in the order of the circle type, square type, and inverted-triangle type, indicating that the circle type had the largest drainage effects after rainfall. Conclusions: The overall findings of this study show that the circle type is the most stable among the circle, square, and inverted-triangle types.