• Title/Summary/Keyword: Soil treatment

Search Result 3,303, Processing Time 0.033 seconds

Studies on the Production of Cellulase by Trichoderma sp. SO-571 and the Enzyme Treatment for Cellulosic Fabrics. (Trichoderma sp. SO-571에 의한 Cellulase 생산 및 섬유가공 처리에 관한 연구)

  • Oh, Sung-Hoon;Kim, Moo-Sung;So, Sung;Seo, Hyung-Ju
    • Microbiology and Biotechnology Letters
    • /
    • v.31 no.1
    • /
    • pp.42-45
    • /
    • 2003
  • A Trichoderma sp. SO-571 producing cellulase was isolated from soil, and a pilot-scale cultivation and separation of cellulase were conducted. The cellulase activity was about 14.5 unit/ml after 112 hr of cultivation in a 301 fermenter containing 3.0% cellulose, 4.0% soybean powder, 3.0% wheat bran, 0.5% ($NH_4$)$_2$$SO_4$0.2% urea, 1.0% CSL, 0.5% $KH_2$PO$_4$, and 0.2% Tween 80. The cellulase was purified over 4.6 folds in three steps with 47.86% yield. The optimum pH of cellulase was pH 5.0 and optimum temperature was $60^{\circ}C$. To investigate the effect of the cellulase-treated cellulosic fabric, the weight loss was compared. The weight loss of denim treated with cellulase from Trichoderma sp.SO-571 was 2.9% and that with Celluclast 1.5L was 2.2%. In tencel treatement with enzyme, cellulase showed 0.7% higer weight loss than that with Celluclast 1.5L.

Spectrophotometric Determination of Bisphenol A by Complexation with Ferricyanide and Ferric chloride solution (Ferricyanide와 ferric chloride 혼합액을 사용한 Bisphenol A의 비색 정량법 개발)

  • Kum, Eun-Joo;Ryu, Hee-Young;Kwon, Gi-Seok;Sohn, Ho-Yong
    • Journal of Life Science
    • /
    • v.17 no.2 s.82
    • /
    • pp.266-271
    • /
    • 2007
  • Bisphenol A (BPA) has been widely used as a monomer for production of epoxy resins and polycarbonate plastics. The annual production of BPA exceeds 640,000 metric tons in worldwide. BPA, a suspected phenolic endocrine disrupter, is moderately soluble and frequently detected in industrial wastewater. To date, HPLC and GC has been used for BPA analysis. However, HPLC and GC-analysis need high operation lost, experts, and an elaborate pre-treatment of samples, and is difficult to apply on-time and mass analysis. Therefore, simple, mass and rapid detection of BPA in environments is necessary. In the present study, spectrophotometric method of BPA quantification was developed. Based on blue-color product formation with BPA and ferric chloride/ferricyanide under the optimized conditions, the standard curve was acquired $({\lambda}_{750}=0.061\;BPA\;[{\mu}M]+0.07155,\;R^2=0.992)$. Using an established method, the BPA contents in the soil extract, and different water samples and living products, including disposable syringe, cup and plastic tube, were analyzed. The results suggested that the method is useful for BPA determination from different massive samples. Since the BPA metabolites, nontoxic 4-hydroxyacetophenone or 4-hydroxybenzaldehyde, did not form blue-color product, this method is also useful to screen a microorganism for BPA bioremediation.

Autotrophic Perchlorate-Removal Using Zero-Valent Iron and Activated Sludge: Batch Test (영가철과 활성슬러지를 이용한 독립영양방식의 퍼클로레이트 제거: 회분배양연구)

  • Ahn, Yeong-Hee;Ha, Myoung-Gyu
    • Journal of Life Science
    • /
    • v.21 no.3
    • /
    • pp.444-450
    • /
    • 2011
  • Perchlorate ($ClO_4^-$) is a contaminant found in surface water and soil/ground water. Autotrophic perchlorate-reducing bacteria (PRB) use hydrogen gas ($H_2$) as an electron donor to remove perchlorate. Since iron corrosion can produce $H_2$, feasibility of autotrophic perchlorate-removal using zero-valent iron (ZVI) was examined in this study using activated sludge that is easily available from a wastewater treatment plant. Batch test showed that activated sludge microorganisms could successfully degrade perchlorate in the presence of ZVI. The perchlorate biodegradation was confirmed by molar yield of $Cl^-$ as perchlorate was degraded. Scanning electron microscope revealed that rod-shaped microorganisms on the surface of iron particles used for the autotrophic perchlorate-removal, suggesting that iron particles could serve as supporting media for the formation of biofilm as well. DGGE analyses revealed that microbial profile of the inoculum (activated sludge) was different from that of biofilm sample obtained from the ZVI-added enrichment culture used for $ClO_4^-$-degradation. A major band of the biofilm sample was most closely related to the class Clostridia.

The Biological Degradation of High Concentration of Trichloroethylene (TCE) by Delftia acidovornas EK2 (Delftia acidovorans EK2에 의한 고농도 Trichloroethylene (TCE)의 생물학적 분해 특성)

  • Park, Woo-Jung;Lee, Sang-Seob
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.183-191
    • /
    • 2010
  • In this study, we isolated 179 bacterial strains using benzene, phenol, ethylbenzene, aniline, cumene, toluene as growth substrate from TCE contaminated soils and wastewaters. All the 179 strains were screened for TCE (30 mg/L) removal (growth substrate 0.2 g/L, $30^{\circ}C$, pH 7, cell biomass 1.0 g/L (w/v)) under aerobic condition for 21 days. EK2 strain using aniline showed the highest removal efficiency (74.4%) for TCE degradation. This strain was identified as Delftia acidovorans as the results of API kit, 16S rDNA sequence and fatty acid assay. In the batch culture, D. acidovorans EK2 showed the bio-degradation for TCE in the various TCE concentration (10 mg/L to 200 mg/L). However, D. acidovorans EK2 did not show the bio-degradation in the TCE 250 mg/L. D. acidovorans EK2 also show the removal efficiency (99.9%) for 12 days in the low concentration (1.0 mg/L). Optimal conditions to degrade TCE 200 mg/L were cell biomass 1.0 g/L (w/v), aniline 0.5 g/L, pH 7 and $30^{\circ}C$. Removal efficiency and removal rate by D. acidovorans EK2 strain was 71.0% and 94.7 nmol/h for 21 days under optimal conditions. Conclusion, we expect that D. acidovorans EK2 may contribute on the biological treatment in the contaminated soil or industrio us wastewater.

Dormancy - breaking Conditions of Bulrush(Scirpus juncoides Roxb.) (올챙고랭이(Scirpus juncoides Roxb.) 종실(種實)의 휴면타파조건(休眠打破條件)에 관한 연구(硏究))

  • Huh, S.M.;Guh, J.O.;Son, P.K.
    • Korean Journal of Weed Science
    • /
    • v.6 no.2
    • /
    • pp.102-109
    • /
    • 1986
  • To know the ecological pattern of bulrush (Scirpus juncoides) seeds in dormancy-breaking responses as affected by different ripening processes, storage conditions, germination conditions, and some of known chemicals concerned, the study was conducted. Among other conditions detected, the burial in 2 cm depth paddy soil, $5^{\circ}C$ storage temperature, pre-maturing process (Green color), high concentration of chemicals used, and flooding paddy surfaces were the most efficient conditions for bulrush seeds to break dormancy and germinate, respectively.

  • PDF

Selection of Herbicide Resistant Potatoes Transformed with Phosphinothricin Acetyltransferase Gene (Phosphinothricin Acetyltransferase 유전자 도입에 의한 제초제 저항성 감자의 선발)

  • Han, S.S.;Jeong, J.H.;Bang, K.S.;Yang, D.C.
    • Korean Journal of Weed Science
    • /
    • v.17 no.4
    • /
    • pp.390-399
    • /
    • 1997
  • This experiment was conducted to introduce PAT (phosphinothricin acetyltransferase, non-selective herbicide bialaphos resistant gene) gene into potato (Solanum tuberosum. cv. Desiree). Optimal shoot regeneration from leaf discs and stem segments was obtained in MS medium supplemented with 0.1 mg/L IBA and 0.5 mg/L BA, and the frequency of shoot regeneration was 54% in left discs and 46% in stem segments. In this condition, leaf discs and stem segments of potato were co-cultivated with A. tumefaciens MP90 which contained binary vector with GUS: :NPTII gene and PAT gene. Transgenic shoots were regenerated from leaf and stem-derived calli on selection medium with 100mg/L kanamycin. The 100${\mu}M$ acetosyringone treatment during the co-cultivation highly enhanced(4 times than the control) the shoot regeneration on selection medium. When the putative transgenic plants were transferred to medium with 10mg/L basta, all of them were survived. After PCR. GUS test, and Southern blot analysis of the survived plant, we confirmed that the gene was stably integrated into the potato genome and expressed. After the transgenic plants were transplanted in soil, and the transgenic plants were sprayed with the herbicide basta (300ml/10a), the transgenic plants remained green but control plants were died.

  • PDF

Weeding Efficacy and Phytotoxicity Evaluation of Soil-Applied Herbicides for Potential Use in Sorghum (수수 재배시 적용 제초제 선발을 위한 약효 및 약해 평가)

  • Hwang, Jae-Bok;Park, Tae-Seon;Park, Hong-Kyu;Kim, Hak-Sin;Choi, In-Bae;Koo, Bon-Il;Bae, Hee-Soo
    • Weed & Turfgrass Science
    • /
    • v.5 no.2
    • /
    • pp.82-87
    • /
    • 2016
  • Herbicide options for weed control in sorghum is very limited, hence there is a need for exploring potential herbicides. Sorghum herbicide tolerance field trails were conducted at two locations, Yaechoun, Gyeongsangbuk-do, and Miryang, Gyeongsangnam-do, in 2013. Tolerance of sorghum was evaluated following the pre-emergence application of methabenzthiazuron 70% (WP), simazine 50% (WP), oxadiargyl 1.7% (EC), and dimethenamid-P 5% + pendimethalin 20% (EC) at the standard rate 157.5 g, 75 g, 5.1 g, and 75 g a.i. $10a^{-1}$, respectively. As well as double the standard rate. On a phytotoxicity scale of 0 to 9, methabenzthiazuron (WP) induced injury to sorghum up to level 1 at the standard rate and to 3 at double the rate, but did not significantly affect the yield any statistical difference from the untreated. Simazine (WP) induced phytotoxicity up to levels 2 and 4 at single and double rates, respectively. Simazine (WP) did not significantly affect yield: however, the values were numerically lower than those in the methabenzthiazuron (WP) treatment. Oxidiargyl (EC) and dimethenamid + pendimethalin (EC) induced no or slight phytotoxicity; however they failed to provide effective weed control at the standard rate (32 and 68% control, respectively). Out of the tested, methabenzthiazuron (WP) was found to have potential for use in sorghum whereas the other herbicides caused unacceptable levels of injury.

Characterization of Pseudomonas sp. MN5 and Purification of Manganese Oxidizing Protein (Pseudomonas sp. MN5의 특성과 망간산화단백질 정제)

  • Lee, Seung-Hui;Park, Kyeong-Ryang
    • Journal of Life Science
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2008
  • Bacterial colonies which were able to oxidize the manganese were isolated from six soil samples in Byungchon area. Among them, one bacterial strain was selected for this study based on its high manganese oxidation activity. This selected bacterial strain was identified as Pseudomonas sp. MN5 through physiological-biochemical test and analysis of its 16s rRNA sequence. This selected bacterial strain was able to utilize fructose and maltose, but they doesn't utilizing various carbohydrates as a sole carbon source. Pseudomonas sp. MN5 showed a very sensitive to antibiotics such as kanamycin, chloramphenicol, streptomycin and tetracycline, but a high resistance up to mg/ml unit to heavy metals such as lithium, manganese and barium. Optimal manganese oxidation condition of Pseudomonas sp. MN5 was pH 7.5 and manganese oxidation activity was inhibited by proteinase K and boiling treatment. The manganese oxidizing protein produced by Pseudomonas sp. MN5 was purified by ammonium sulfate precipitation, HiTrap Q FF anion exchange chromatography and G3000sw $_{XL}$ gel filtration chromatography. By sodium dodecyl sulfate polyacrylamide gel electrophoresis, three manganese oxidizing protein with estimated molecular weights of 15 kDa, 46.7 kDa and 63.5 kDa were detected. Also, it was estimated that manganese oxidizing protein produced by Pseudomonas sp. MN5 were a kind of porin proteins through internal sequence and N-terminal sequence analysis.

Characterization of Perchlorate-Removal Using Elemental Sulfur Granules and Activated Sludge (원소 황 입자와 활성슬러지를 이용한 퍼클로레이트 제거특성)

  • Han, Kyoung-Rim;Ahn, Yeonghee
    • Journal of Life Science
    • /
    • v.23 no.5
    • /
    • pp.676-681
    • /
    • 2013
  • Perchlorate (${ClO_4}^-$) is an emerging contaminant found in surface water and soil/groundwater. Microbial removal of perchlorate is the method of choice since perchlorate-reducing bacteria (PRB) can reduce perchlorate to harmless end-products. A previous study [3] showed experimental evidence of autotrophic perchlorate removal using elemental sulfur granules and activated sludge. The granular sulfur is a relatively inexpensive electron donor, and activated sludge is easily available from a wastewater treatment plant. A batch test was performed in this study to further investigate the effect of various environmental parameters on the perchlorate degradation by sludge microorganisms when elemental sulfur was used as electron donor. Results of the batch test suggest optimum conditions for autotrophic perchlorate degradation by sludge microorganisms. The results also show that sulfur-oxidizing PRB enriched from activated sludge removed perchlorate better than activated sludge. Taken together, this study suggests that autotrophic perchlorate removal using elemental sulfur and activated sludge can be improved by employing optimized environmental conditions and enrichment culture.

Plant Growth Promotion by Purple Nonsulfur Rhodopseudomonas faecalis Strains (자색비유황세균 Rhodopseudomonas faecalis의 식물생장촉진능)

  • Lee, Eun-Seon;Song, Hong-Gyu
    • Korean Journal of Microbiology
    • /
    • v.46 no.2
    • /
    • pp.157-161
    • /
    • 2010
  • Photosynthetic purple nonsulfur bacterial strains were isolated from the sediments collected from rice paddy fields and sludges of wastewater treatment plant, and their plant growth promoting capabilities were examined. Most well known phytohormones, auxin such as indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and 5'-aminolevulinic acid (ALA) were detected by HPLC in the culture broth of these isolates. Among the isolated bacteria, Rhodopseudomonas faecalis D15 showed the highest production rate of 769.8 ${\mu}g$/mg protein of IAA, 1323 ${\mu}g$/mg protein of IBA and 7.4 mM/mg protein of ALA in the modified Biebl and Pfennig's medium. R. faecalis C9 showed the highest production rate of 20.82 ${\mu}g$/mg protein of gibberellin. In consequence, the root length and dry weight of the germinated tomato seedling treated with R. faecalis isolates were longer and heavier than those of uninoculated control after 15 days of incubation in the soil. Especially, the dry weight of germinated tomato seedling increased by 119.4% in C9-treated samples after 15 days. These purple nonsulfur bacteria may be utilized as environment-friendly biofertilizer in the agriculture.