Browse > Article

The Biological Degradation of High Concentration of Trichloroethylene (TCE) by Delftia acidovornas EK2  

Park, Woo-Jung (Department of Biological Engineering, Kyonggi University)
Lee, Sang-Seob (Department of Biological Engineering, Kyonggi University)
Publication Information
Korean Journal of Microbiology / v.46, no.2, 2010 , pp. 183-191 More about this Journal
Abstract
In this study, we isolated 179 bacterial strains using benzene, phenol, ethylbenzene, aniline, cumene, toluene as growth substrate from TCE contaminated soils and wastewaters. All the 179 strains were screened for TCE (30 mg/L) removal (growth substrate 0.2 g/L, $30^{\circ}C$, pH 7, cell biomass 1.0 g/L (w/v)) under aerobic condition for 21 days. EK2 strain using aniline showed the highest removal efficiency (74.4%) for TCE degradation. This strain was identified as Delftia acidovorans as the results of API kit, 16S rDNA sequence and fatty acid assay. In the batch culture, D. acidovorans EK2 showed the bio-degradation for TCE in the various TCE concentration (10 mg/L to 200 mg/L). However, D. acidovorans EK2 did not show the bio-degradation in the TCE 250 mg/L. D. acidovorans EK2 also show the removal efficiency (99.9%) for 12 days in the low concentration (1.0 mg/L). Optimal conditions to degrade TCE 200 mg/L were cell biomass 1.0 g/L (w/v), aniline 0.5 g/L, pH 7 and $30^{\circ}C$. Removal efficiency and removal rate by D. acidovorans EK2 strain was 71.0% and 94.7 nmol/h for 21 days under optimal conditions. Conclusion, we expect that D. acidovorans EK2 may contribute on the biological treatment in the contaminated soil or industrio us wastewater.
Keywords
aniline; biodegradation; D. acidovorans EK2; TCE;
Citations & Related Records

Times Cited By SCOPUS : 0
연도 인용수 순위
  • Reference
1 Roger, L.E., K.J. Williamson, R.H. Michael, and D.J. Arp. 1997. Cometabolism of chlorinated solvents by nitrifying bacteria: kinetics, substrate interactions, toxicity effects, and bacterial response. Biotechnol. Bioeng. 54, 520-534.   DOI   ScienceOn
2 U.S. Environmental Protection Agency. 1990. Laboratory Investigation of Residual Liquid Organics from Spills, Leaks, and Disposal of Hazardous Wastes in Groundwater. EPA/600/6-90/ 004. Environmental Protection Agency, Washington, D.C., USA.
3 Wilson, J.T. and B.H. Wilson. 1985. Biotransformation of trichloroethylene in soil. Appl. Environ. Microbiol. 49, 242-243.
4 Yuki, M., U. Hajime, T. Yasunori, and H. Katsutoshi. 2004. Addition of aromatic substrates restores trichloroethylene degradation activity in Pseudomonas putida F1. Appl. Environ. Microbiol. 70, 2830-2835.   DOI   ScienceOn
5 Landa, A.S., E.M. Sipkema, J. Weijma, A.A.C.M. Beenackers, J. Dolfing, and D.B. Janssen. 1994. Cometabolic degradation of trichloroethylene by Pseudomonas cepacia G4 in a chemostat with toluene as the primary substrate. Appl. Environ. Microbiol. 60, 3368-3374.
6 Hashimoto, A., K. Iwasaki, M. Nakajima, and O. Yagi. 2000. Degradation of trichloroethylene and related compounds by Mycobacterium spp. isolated from soil. Clean Prod. Proc. 2, 167-173.   DOI   ScienceOn
7 Hyman, M.R., S.A. Russell, R.L. Ely, K.J. Williamson, and D.J. Arp. 1995. Inhibition, inactivation, and recovery of ammoniaoxidizing activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61, 1480-1487.
8 Strand, S.E., M.D. Bjelland, and H.D. Stensel. 1990. Kinetics of chlorinated hydrocarbon degradation by suspended cultures of methane oxidizing bacteria. Res. J. Wat. Poll. Control Fed. 62, 124-129.
9 Sun, A.K. and T.K. Wood. 1996. Trichloroethylene degradation and mineralization by Pseudomonas and Methylosinus trichosporium OB3b. Appl. Microbiol. Biotechnol. 45, 248-256.   DOI   ScienceOn
10 U.S. Environmental Protection Agency. 1984. National Primary Drinking Water Standard. Proposed Fed. Regist. 49, 24329.
11 Kang, J.M., E.Y. Lee, and S.H. Park. 2001. Co-methabolic biodegradation of trichloroethylene by Methylosinus trichosporium is stimulated by low concentrations methane or methanol. Biotechnol. Lett. 23, 1877-1882.   DOI   ScienceOn
12 Fox, B.G., J.G. Borneman, L.P. Wackett, and J.D. Lipscomb. 1990. Haloalkene oxidation by the soluble methane monooxygenase from methylosinus trichosporium OB3b: mechanistic and environmental implications. Biochemistry 29, 6419-6425.   DOI   ScienceOn
13 Saenton, S., T.H. Illangasekare, K. Soga, and T.A. Saba. 2002. Effects of source zone heterogeneity on surfactant-enhanced NAPL dissolution and resulting remediation end-points. J. Contam. Hydrol. 59, 27-44.   DOI   ScienceOn
14 Oramas, S., M. Rudolf, and L. Ekawan. 2009. Trichloroethylene cometabolic degradation by Rhodococcus sp. L4 induced with plant essential oils. Biodegradation 20, 281-291.   DOI   ScienceOn
15 Park, J.H., J.K. Jerome, and M.A. Linda. 2002. Characterization of the adaptive response to trichloroethylene-mediated stresses in Ralstonia pickettii PKO1. Appl. Environ. Microbiol. 68, 5231-5240.   DOI   ScienceOn
16 Phelps, T.J., J.J. Niedzielski, R.M. Schram, S.E. Herbes, and D.C. White. 1990. Biodegradation of trichloroethylene in continuous recycle expanded-bed bioreactors. Appl. Environ. Microbiol. 56, 1702-1709.
17 Schwille, F. 1988. Dense chlorinated solvents in porous and fractured media. Lewis Publishers, Boco Raton, FL, USA.
18 Ensign, S.A., M.R. Hyman, and D.J. Arp. 1992. Cometabolic degradation of chlorinated alkenes by alkene monooxygenase in a propylene-grown Xanthobacter strain. Appl. Environ. Microbiol. 58, 3038-3046.
19 French, W.T., R.B. Lewis, N.D. Donald, L.F. Herbert, and L.T. Cynthia. 2002. Effects of n-hexadecane and PM-100 clay on trichloroethylene degradation by Burkholderia cepacia. J. Hazard Mater. 92, 89-102.   DOI   ScienceOn
20 Hamamura, N., C. Page, T. Long, L. Semprini, and D.J. Arp. 1997. Chloroform cometabolism by butane-grown CF8, Pseudomonas butanovora, Mycobacterium vaccae JOB 5, and methane-grown Methylosinus trichosporium OB3b. Appl. Environ. Microbiol. 63, 3607-3613.
21 Ministry of Environment. Soil contamination corcerning / counterplan level.
22 Selvaratnam, C., B.A. Schoedel, B.L. McFarland, and C.F. Kulpa. 1997. Application of the polymerase chain reaction (PCR) and the recerse trancriptase/PCR for determining the fate of phenol degrading Pseudomonas putida ATCC 11172 in a bioaugmented sequencing batch reactor. Appl. Microbiol. Biotechnol. 47, 236-240.   DOI   ScienceOn
23 McDonald, I.R., H. Uchiyama, S. Kambe, O. Yagi, and J.C. Murrell. 1997. The soluble methane monooxygenase gene cluster of the trichloroethylene-degrading methanotroph Methylocystis sp. strain M. Appl. Environ. Microbiol. 63, 1898-1904.
24 Michael, R.H., A.R. Sterling, L.E. Roger, K.J. Williamson, and D.J. Arp. 1995. Inhibition, inactivation, and recovery of ammoniaoxidizing Activity in cometabolism of trichloroethylene by Nitrosomonas europaea. Appl. Environ. Microbiol. 61, 1480-1487.
25 Ministry of Environment. 2007. Report of groundwater measurement.
26 Atlas, R.M. 1995. Bioremediation. Chem. Eng. News. 73, 32-42.
27 Ewers, J., D. Freier-Schrader, and H.J. Knackmuss. 1990. Selection of trichloroethene (TCE) degrading bacteria that resist inactivation by TCE. Arch. Microbiol. 154, 410-413.   DOI
28 Fitch, M.W., G.E. Speitel, Jr. and G. Georgior. 1996. Degradation of trichloroethylene by methanol-grown cultures of Methylosinus trichosporium OB3b pp358. Appl. Environ. Microbiol. 26, 1124-1128.
29 Folsom, B.R., P.J. Chapman, and P.H. Pritchard. 1990. Phenol and trichloroethylene degradation by Pseudomonas cepacia G4: kinetics and interactions between substrates. Appl. Environ. Microbiol. 56, 1279-1285.
30 Bilge, A.K. and C. Ferhan. 2005. Cometabolic degradation of TCE in enriched nitrifying batch systems. J. Hazard. Mater. 125, 260-265.   DOI
31 Chen, Y.M., T.F. Lin, H. Chih, and J.C. Lin. 2008. Cometabolic degradation kinetics of TCE and phenol by Pseudomonas putida. Chemosphere 71, 1671-1680.
32 Lee, S.W., R.K. David, and D.H. Lim. 2006. Mixed pollutant degradation by Methylosinus trichosporium OB3b expressing either soluble or particulate methane monooxygenase: can the tortoise beat the hare?. Appl. Environ. Microbiol. 55, 7503-7509.
33 Ministry of Labor. 2000. 99 Research on the actual condition of working environment of manufacturing company.
34 Lenhard, R.J., J.C. Parker, and J.J. Kaluarachchi. 1989. A model for hysteretic constitutive relations governing multiphase flow, 3. Refinements and numerical simulations. Water Resour. Res. 25, 1727-1736.   DOI
35 Dekker, T.J. and L.M. Abriola. 2000. The influence of field-scale heterogeneity on the infiltration and entrapment of dense nonaqueous phase liquids in saturated formation. J. Contam. Hydrol. 42, 187-218.   DOI
36 Eguchi, M., H. Myoga, S. Sasaki, Y. Miyake, and M. Fujita. 2001. The characterization of trichloroethylene degradation by Methylomonas sp. KSW III isolated from TCE-contaminated site. Environ. Conserv. Engineer. 30, 553-560.   DOI
37 Malachowsky, K.J., T.J. Phelps, A.B. Teboli, D.E. Minnikin, and D.C. White. 1994. Aerobic mineralization of trichloroethylene, vinyl chloride, and aromatic compounds by Rhodococcus species. Appl. Environ. Microbiol. 60, 542-548.
38 Leahy, J.G., A.M. Byrne, and R.H. Olsen. 1996. Comparison of factors influencing trichloroethylene degradation by tolueneoxidizing bacteria. Appl. Environ. Microbiol. 62, 825-833.
39 Agency for Toxic Substances and Disease Registry (ATSDR). 1997. Toxicological profile for trichloroethylene, ATSDR, Division of Toxicological, Atlanta, GA, USA.
40 Alan, R.H. and Y. Kim. 1990. Trichloroethylene degradation by two independent aromatic-degrading pathways in Alcaligenes eutrophus JMP134. Appl. Environ. Microbiol. 56, 1179-1181.
41 Lee, C.Y. and W.D. Liu. 2006. The effect of saliny conditions on kinetics of trichloroethylene biodegradation by toluene-oxidizing cultures. J. Hazard Mater. 137, 541-549.   DOI   ScienceOn
42 Kelly, C.J., P.R. Bienkowski, and P.S. Sayler. 2000. Kinetic analysis of a tod-lux bacterial reporter for toluene degradation and trichloroethylene cometabolism. Biotechnol. Bioeng. 69, 256-265.   DOI   ScienceOn
43 Kimberly, H.H., A.S. Luis, J.B. Peter, and D.J. Arp. 2005. Trichloroethylene degradation by butane-oxidizing bacteria causes a spectrum of toxic effects. Appl. Environ. Microbiol. 68, 794-801.
44 Korea Water Resources Corporation. 2005. Scrutiny and design services for restoration of soil and groundwater contamination.