• Title/Summary/Keyword: Soil transfer

Search Result 620, Processing Time 0.03 seconds

Generation of Land Surface Model based Hydrometeorological Data using High Resolution Local Soil Properties in South Korea (국내 토양 특성을 반영한 지면모델기반 수문기상정보 산출)

  • Ryu, Young;Ji, Heesook;Bae, Hyedeuk;Lim, Yoon-Jin;Kim, Baek-Jo;Han, Gwang-Hyun
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.525-525
    • /
    • 2015
  • 국립기상과학원은 국가 물관리를 효율적으로 지원하기 위하여 TOPLATS(TOPmodel based Land-Atmosphere Transfer Scheme) 지면모델 기반을 활용한 전국 수문기상 분석 및 예측정보 생산체계를 구축하였다. TOPLATS 지면모델에서는 토양, 식생 등을 표현하기 위한 다양한 매개변수들이 사용되고 있으며, 그 중에서도 토양 속성과 관련 매개변수들은 토양수분, 증발산 등의 수문기상요소 생산에 큰 영향을 미치고 있어 현실적인 토양 특성에 대한 고려가 요구된다. 본 연구는 국립농업과학원의 토양도 정보를 이용하여 TOPLATS 지면모델에서 요구되는 토양 속성 및 관련 매개변수를 산정하고 이를 모델에 적용하고자 하였다. TOPLATS 모델에 사용되는 토양 매개변수는 총 22개 이며, 본 연구에서는 국립농업과학원에서 제공한 총 405개의 토양통에 대한 매개변수를 각각 산정하였다. TOPLATS 모델을 강제하기 위한 기상자료는 동네예보 분석자료, KLAPS(Korea Local Analysis and Prediction System) 분석자료, 입사 단 장파 복사량은 ASOS 관측자료를 기반으로 한 5km 해상도의 남한 격자자료이며, 2010~2013년 기간의 토양수분, 증발산량에 대한 검증 연구를 수행하였다. 본 연구의 결과는 기존의 11개 토양속성정보로 산출된 결과와 비교 분석하여 추후 제시할 예정이며, 본 연구에서 산출된 국내 토양 특성을 반영한 고해상도 수문기상정보는 향후 홍수 예측 및 가뭄 평가에 활용 할 수 있을 것으로 기대된다.

  • PDF

Reduction of Dissolved Fe(III) by As(V)-tolerant Bacteria Isolated from Rhizosphere Soil

  • Khanal, Anamika;Song, Yoonjin;Cho, Ahyeon;Lee, Ji-Hoon
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.1
    • /
    • pp.67-72
    • /
    • 2021
  • BACKGROUND: Biological iron redox transformation alters iron minerals, which may act as effective adsorbents for arsenate [As(V)] in the environments. In the viewpoint of alleviating arsenate, microbial Fe(III) reduction was sought under high concentration of As(V). In this study, Fe(III)-reducing bacteria were isolated from the wild plant rhizosphere soils collected at abandoned mine areas, which showed tolerance to high concentration of As(V), in pursuit of potential agents for As(V) bioremediation. METHODS AND RESULTS: Bacterial isolation was performed by a series of enrichment, transfer, and dilutions. Among the isolated strains, two strains (JSAR-1 and JSAR-3) with abilities of tolerance to 10 mM As(V) and Fe(III) reduction were selected. Phylogenetic analysis using 16S rRNA genesequences indicated the closest members of Pseudomonas stutzeri DSM 5190 and Paenibacillus selenii W126, respectively for JSAR-1 and JSAR-3. Ferric and ferrous iron concentrations were measured by ferrozine assay, and arsenic concentration was analyzed by ICP-AES, suggesting inability of As(V) reduction whereas ability of Fe(III) reduction. CONCLUSION: Fe(III)-reducing bacteria isolated from the enrichments with arsenate and ferric iron were found to be resistant to a high concentration of As(III) at 10 mM. We suppose that those kinds of microorganisms may suggest good application potentials for As(V) bioremediation, since the bacteria can transform Fe while surviving under As-contaminated environments. The isolated Fe(III)-reducing bacterial strains could contribute to transformations of iron minerals which may act as effective adsorbents for arsenate, and therefore contribute to As(V) immobilization

Research for the Selection of Agricultural environment in Papua New Guinea (파푸아뉴기니 농업 환경 기초조사)

  • Chang, Kwang Jin;Koo, Hyun Jung;Choi, Jang-Nam
    • Journal of Practical Agriculture & Fisheries Research
    • /
    • v.17 no.1
    • /
    • pp.183-204
    • /
    • 2015
  • Papua New Guinea, birthplace of the South Pacific, is a natural nation which have potential of increasing crops output because it has optimum condition for crop growth as tropical rain forest climate under hot and humid climate. Farming village of Papua New Guinea want to produce crops for create income beyond the self-sufficiency. It needs the technological transfer such as irrigation facilities and understanding of agricultural weather condition for good crops production. In particular, it needs a improvement through pH, EC, ORP for make optimum soil condition and it need the standardization production and farm products what the consumer wants. Internationally technical cooperation is needed for agricultural development of Papua New Guinea and maintenance of international cooperation will help for economic development between the two countries. In particular, basic environment research for agricultural development of Papua New Guinea is expected to play a larger role of technical cooperation of agriculture.

The Behavior of Rammed Aggregate Piers (RAP) in Soft Ground (I) (연악지반의 쇄석다짐말뚝에 대한 거동 분석 (I))

  • Bae, Kyung-Tae;Lee, Chong-Kyu
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.4
    • /
    • pp.169-183
    • /
    • 2007
  • Numerical analysis was performed to investigate the behavior of rammed aggregate piers (RAP) in soft ground with various interface conditions, area replacement ratio, aspect ratio and surcharge loads of pile and soil. And field modulus load test was carried out to predict the input parameters. Field prototype (unit cell) tests are in progress to compare the result of numerical analysis. Also a modified load transfer equation of RAP on soft foundation was proposed. According to the results, the behavior of RAP depended on such as interface conditions, settlement characteristics (free strain) and stress concentration ratio. On the other hand, maximun stress concentration ratio increased as area replacement ratio and aspect ratio increased, and it was remarkably affected by surcharge loads.

Complete Chloroplast Genome assembly and Annotation of Milk Thistle (Silybum marianum) and Phylogenetic Analysis

  • Hwajin Jung;Yedomon Ange Bovys Zoclanclounon;Jeongwoo Lee;Taeho Lee;Jeonggu Kim;Guhwang Park;Keunpyo Lee;Kwanghoon An;Jeehyoung Shim;Joonghyoun Chin;Suyoung Hong
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2022.10a
    • /
    • pp.210-210
    • /
    • 2022
  • Silybum marianum is an annual or biennial plant from the Asteraceae family. It can grow in low-nutrient soil and drought conditions, making it easy to cultivate. From the seed, a specialized plant metabolite called silymarin (flavonolignan complex) is produced and is known to alleviate the liver from hepatitis and toxins damages. To infer the phylogenetic placement of a Korean milk thistle, we conducted a chloroplast assembly and annotation following by a comparison with existing Chinese reference genome (NC_028027). The chloroplast genome structure was highly similar with an assembly size of 152,642 bp, an 153,202 bp for Korean and Chinese milk thistle respectively. Moreover, there were similarities at the gene level, coding sequence (n = 82), transfer RNA (n = 31) and ribosomal RNA (n = 4). From all coding sequences gene set, the phylogenetic tree inference placed the Korean cultivar into the milk thistle clade; corroborating the expected tree. Moreover, an investigation the tree based only on the ycf1 gene confirmed the same tree; suggesting that ycf1 gene is a potential marker for DNA barcoding and population diversity study in milk thistle genus. Overall, the provided data represents a valuable resource for population genomics and species-centered determination since several species have been reported in the Silybum genus.

  • PDF

The responses of battered pile to tunnelling at different depths relative to the pile length

  • Mukhtiar Ali Soomro;Naeem Mangi;Dildar Ali Mangnejo;Zongyu Zhang
    • Geomechanics and Engineering
    • /
    • v.35 no.6
    • /
    • pp.603-615
    • /
    • 2023
  • Population growth and urbanization prompted engineers to propose more sophisticated and efficient transportation methods, such as underground transit systems. However, due to limited urban space, it is necessary to construct these tunnels in close proximity to existing infrastructure like high-rise buildings and bridges. Battered piles have been widely used for their higher stiffness and bearing capacity compared to vertical piles, making them effective in resisting lateral loads from winds, soil pressures, and impacts. Considerable prior research has been concerned with understanding the vertical pile response to tunnel excavation. However, the three-dimensional effects of tunnelling on adjacent battered piled foundations are still not investigated. This study investigates the response of a single battered pile to tunnelling at three critical depths along the pile: near the pile shaft (S), next to the pile (T), and below the pile toe (B). An advanced hypoplastic model capable of capturing small strain stiffness is used to simulate clay behaviour. The computed results reveal that settlement and load transfer mechanisms along the battered pile, resulting from tunnelling, depend significantly on the tunnel's location relative the length of the pile. The largest settlement of the battered pile occurs in the case of T. Conversely, the greatest pile head deflection is caused by tunnelling near the pile shaft. The battered pile experiences "dragload" due to negative skin friction mobilization resulting from tunnel excavation in the case of S. The battered pile is susceptible to induced bending moments when tunnelling occurs near the pile shaft S whereas the magnitude of induced bending moment is minimal in the case of B.

Study on the Heat Transfer Phenomenon around Underground Concrete Digesters for Bigas Production Systems (생물개스 발생시스템을 위한 지하매설콘크리트 다이제스터의 열전달에 관한 연구)

  • 김윤기;고재균
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.22 no.1
    • /
    • pp.53-66
    • /
    • 1980
  • The research work is concerned with the analytical and experimental studies on the heat transfer phenomenon around the underground concrete digester used for biogas production Systems. A mathematical and computational method was developed to estimate heat losses from underground cylindrical concrete digester used for biogas production systems. To test its feasibility and to evaluate thermal parameters of materials related, the method was applied to six physical model digesters. The cylindrical concrete digester was taken as a physical model, to which the model,atical model of heat balance can be applied. The mathematical model was transformed by means of finite element method and used to analyze temperature distribution with respect to several boundary conditions and design parameters. The design parameters of experimental digesters were selected as; three different sizes 40cm by 80cm, 80cm by 160cm and l00cm by 200cm in diameter and height; two different levels of insulation materials-plain concrete and vermiculite mixing in concrete; and two different types of installation-underground and half-exposed. In order to carry out a particular aim of this study, the liquid within the digester was substituted by water, and its temperature was controlled in five levels-35。 C, 30。 C, 25。 C, 20。C and 15。C; and the ambient air temperature and ground temperature were checked out of the system under natural winter climate conditions. The following results were drawn from the study. 1.The analytical method, by which the estimated values of temperature distribution around a cylindrical digester were obtained, was able to be generally accepted from the comparison of the estimated values with the measured. However, the difference between the estimated and measured temperature had a trend to be considerably increased when the ambient temperature was relatively low. This was mainly related variations of input parameters including the thermal conductivity of soil, applied to the numerical analysis. Consequently, the improvement of these input data for the simulated operation of the numerical analysis is expected as an approach to obtain better refined estimation. 2.The difference between estimated and measured heat losses was shown to have the similar trend to that of temperature distribution discussed above. 3.It was found that a map of isothermal lines drawn from the estimated temperature distribution was very useful for a general observation of the direction and rate of heat transfer within the boundary. From this analysis, it was interpreted that most of heat losses is passed through the triangular section bounded within 45 degrees toward the wall at the bottom edge of the digesten Therefore, any effective insulation should be considered within this region. 4.It was verified by experiment that heat loss per unit volume of liquid was reduced as the size of the digester became larger For instance, at the liquid temperature of 35˚ C, the heat loss per unit volume from the 0. 1m$^3$ digester was 1, 050 Kcal/hr m$^3$, while at for 1. 57m$^3$ digester was 150 Kcal/hr m$^3$. 5.In the light of insulation, the vermiculite concrete was consistently shown to be superior to the plain concrete. At the liquid temperature ranging from 15。 C to 350 C, the reduction of heat loss was ranged from 5% to 25% for the half-exposed digester, while from 10% to 28% for the fully underground digester. 6.In the comparison of heat loss between the half-exposed and underground digesters, the heat loss from the former was fr6m 1,6 to 2, 6 times as much as that from the latter. This leads to the evidence that the underground digester takes advantage of heat conservation during winter.

  • PDF

A Study on Treatment of Soils Contaminated by Diesel and Kerosene Using Hydrogen Peroxide Catalyzed by Naturally Occurring Iron Minerals (디젤과 등유로 오염된 토양의 철광석으로 촉매화된 과수를 이용한 처리에 관한 연구)

  • Choi, Jin-Ho;Kim, Sang-Dae;Moon, Sei-Ki;Kong, Sung-Ho
    • Applied Chemistry for Engineering
    • /
    • v.10 no.1
    • /
    • pp.24-29
    • /
    • 1999
  • Naturally-occurring iron minerals, goethite, magnetite, and hydrogen peroxide were used to catalyze and initiate Fenton-like oxidation of silica sand contaminated with mixture of diesel and kerosene in batch system. Optimal reaction conditions were investigated by varying pH(3, 7), $H_2O_2$ concentration(0%, 1%, 7%, 15%, 35%), initial contaminant concentration(0.2, 0.5, 1.0 g-mixture of diesel and kerosene/ kg-soil), and iron mineral contents(1, 5, and 10 wt % magnetite or goethite). Contaminant degradations in silica sand-iron mineral-$H_2O_2$ systems were identified by determining total petroleum hydrocarbon(TPH) concentration. The optimal pH of the system was 3. The system which iron minerals were the only iron source was more efficient than the system with $FeSO_4$ solution due to lower $H_2O_2$ consumption. In case of initial contaminant concentration of 1g-contaminant/kg-soil with 5 wt % magnetite, addition of 0%, 1%, 7%, 15%, and 35% of $H_2O_2$ showed 0%, 24.5%, 44%, 52%, and 70% of TPH reduction in 8 days, respectively. When the mineral contents were varied 0, 1, 5, and 10wt%, removal of contaminants were 0%, 33.5%, 50%, and 60% for magnetite and 0%, 29%, 41%, and 53% for goethite, respectively. Reaction of magnetite system showed higher degradation than that of goethite system due to dissolution of iron and mixed presence of iron(II) and iron(III); however, dissolved iron precipitated on the surface of iron mineral and seemed to cause reducing electron transfer activity on the surface and quenching $H_2O_2$. The system using goethite has better treatment efficiency due to less $H_2O_2$ consumption. When cach system was mixed by shaker, removal of contaminants increased by 41% for magnetite and 30% for goethite. Results of this study showed catalyzed $H_2O_2$ system made in-situ treatment of soil contaminated with petroleum possible without addition of iron source since natural soils generally contain iron minerals such as magnetite and goethite.

  • PDF

Experimental and Numerical Study on the Effect of the Rain Infiltration with the Increase of Surface Temperature (지표면 온도상승이 빗물의 토양침투에 미치는 영향에 대한 실험 및 수치 해석적 연구)

  • Shin, Nara;Shin, Mi Soo;Jang, Dong Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.6
    • /
    • pp.422-429
    • /
    • 2013
  • It is generally known that the increase of the Earth surface temperature due to the global warming together with the land desertification by rapid urban development has caused severe climate and weather change. In desert or desertification land, it is observed that there are always severe flooding phenomena, even if desert sand has the high porosity, which could be believed as the favorable condition of rain water infiltration into ground water. The high runoff feature causes possibly another heavy rain by quick evaporation with the depletion of underground water due to the lack of infiltration. The basic physics of desert flooding is reasonably assumed due to the thermal buoyancy of the higher temperature of the soil temperature than that of the rain drop. Considering the importance of this topic associated with water resource management and climate disaster prevention, no systematic investigation has, however, been reported in literature. In this study, therefore, a laboratory scale experiment together with the effort of numerical calculation have been performed to evaluate quantitatively the basic hypothesis of run-off mechanism caused by the increase of soil temperature. To this end, first, of all, a series of experiment has been made repeatedly with the change of soil temperature with well-sorted coarse sand having porosity of 35% and particle diameter, 2.0 mm. In specific, in case 1, the ground surface temperature was kept at $15^{\circ}C$, while in case 2 that was high enough at $70^{\circ}C$. The temperature of $70^{\circ}C$ was tested as this try since the informal measured surface temperature of black sand in California's Coachella Valley up to at 191 deg. $^{\circ}F$ ($88^{\circ}C$). Based on the experimental study, it is observed that the amount of runoff at $70^{\circ}C$ was higher more than 5% compared to that at $15^{\circ}C$. Further, the relative amount of infiltration by the decrease of the surface temperature from 70 to $15^{\circ}C$ is about more than 30%. The result of numerical calculation performed was well agreed with the experimental data, that is, the increase of runoff in calculation as 4.6%. Doing this successfully, a basic but important research could be made in the near future for the more complex and advanced topic for this topic.

Plant regeneration from hypocotyls explants of Astragalus sinicus L. (자운영(Astragalus sinicus L.) 배축절편으로부터 식물체 재생)

  • Park, Min Sun;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.42 no.4
    • /
    • pp.396-400
    • /
    • 2015
  • To investigate the optimal conditions for shoot organogenesis in Astragalus sinicus L., hypocotyl explants were cultured in Murashige & Skoog's (MS) medium supplemented with 0.1, 1.0, 2.0, or 4.0 mg/L 2,4-dichlorophenoxy acetic acid (2,4-D) for 6 weeks. 2,4-D concentration significantly effected morphogenesis: some produced calli with adventitious shoots and roots, some produced calli with adventitious roots, some produced only calli, and some produced deep-brownish calli with roots. The formation of calli with shoots and/or roots was observed at lower levels of 2,4-D, whereas calli without shoots or with deep-brownish roots were formed after treatment with higher levels of 2,4-D. Also, a shoot organogenesis ability of callus clones was observed after treatment with medium with 0.1 or 1.0 mg/L 2,4-D grown in MS medium with combinations of benzyl adenine (BA) and 2,4-D for 4 weeks. Medium with a combination of BA and 2,4-D was effective for shoot formation, whereas root organogenesis from calli decreased. The greatest amount of shoot formation was obtained when calli were cultured in MS medium containing 1.0 mg/L 2,4-D and 0.5 mg/L BA. Upon shoot transfer into 1/2 MS basal medium, plantlets developed, and the plantlets grew well in soil in a greenhouse.