• Title/Summary/Keyword: Soil transfer

Search Result 617, Processing Time 0.022 seconds

Biological Control of Crown Gall

  • Kerr, Allen;Biggs, John;Ophel, Kathy
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 1994.06a
    • /
    • pp.11-26
    • /
    • 1994
  • Crown gall of stonefruit and nut trees is one of the very few plant diseases subject to efficient biological control. The disease is caused by the soil-inhabiting bacteria Agrobacterium tumefaciens and Agrobacterium rhizogenes and the original control organism was a non-pathogenic isolate of A. rhizogenes strain K84. Control is achieved by dipping planting material in a cell suspension of strain K84 which specifically inhibits pathogenic strains containing a nopaline Ti plasmid. Because the agrocin 84-encoding plasmid (pAgK84) is conjugative, it can be transmitted from the control strain to pathogenic strains which, as a result, become immune to agrocin 84 and cannot be controlled. To prevent this happening, the transfer genes on pAgK84 were located and then largely eliminated by recombinant DNA technology. The resulting construct, strain K1026, is transfer deficient but controls crown gall just as effectively as does strain K84. Field data from Spain confirm that pAgK84 can transfer to pathogenic recipients from strain K84 but not from strain K1026. The latter has been registered in Australia as a pesticide and is the first genetically engineered organism in the world to be released fro commercial use. It is recommended as a replacement for strain K84 to prevent a breakdown in the effectiveness of biological control of crown gall. Several reports indicate that both strains K84 and K1026 sometimes control crown gall pathogens that are resistant to agrocin 84. A possible reason for this is that both strains produce a second antibiotic called 434 which inhibits growth of nearly all isolates of A. rhizogenes, both pathogens and non-pathogens. Crown gall of grapevine is caused by another species, Agrobacterium vitis. It is resistant to agrocin 84 and cannot be controlled by strains K84 or K1026. It is different from other crown gall pathogens in several characteristics, including the fact that, although a rhizosphere coloniser, its also lives systemically in the vascular tissue of grapevine. Pathogen free propagating material can be obtained from tissue culture or, less surely, by heat therapy of dormant cuttings. A number of laboratories are searching for a biocontrol strain that will prevent, or at least delay, reinfection. A non-pathogenic A. vitis strain F/25 from South Africa looks very promising in this regard.

  • PDF

The Establishment Year of 'Jeongnimsa' Temple in Buyeo (백제(百濟) '정림사(定林寺)'의 창건연대(創建年代))

  • Kim, Nak Jung
    • Korean Journal of Heritage: History & Science
    • /
    • v.45 no.4
    • /
    • pp.38-53
    • /
    • 2012
  • This paper investigated the construction year of 'Jeongnimsa(定林寺)temple in Buyeo(扶餘) through the recent archaeological records. First, the composition of land for the construction of temple was linked with Gwanbukri(官北里) sites which is estimated as palace. The composition of land for the palace was formed at late 6th century. Second, the several furnace sites was discovered under the foundation soil layers for the construction of temple. Reference to the pottery excavated from the previous surface indicates that the workshops having been operated a period of time after the transfer of the capital to Sabi(泗?). These workshops having been operated before the construction of roof-tile buildings which were followed by the large-scale composition of land for the palace at Gwanbukri sites adjacent to the north of 'Jeongnimsa. The pottery, roof-tiles and chinese porcelain which were included in the earth laid on the ground for the construction of temple also indicates that the construction year of temple do not go up to shortly after the transfer of the capital to Sabi. This is related with that wooden pagoda would have been present before stone pagoda and the foundation of the wooden pagoda would have soared into the ground. Last, the building layout of temple is familiar to Iksan(益山) Mireuksa(彌勒寺址) temple site than the temples of Buyeo such as Wangheungsa(王興寺址) temple site. This imply that Jeongnimsa temple was not constructed shortly after the transfer of the capital to Sabi like the opinion of the existing. Jeongnimsa temple was probably constructed at late 6th century when composition of the Sabi city was actively made.

Studies on Characterization of Active Substances from Antagonistic Streptomyces sp. A-2 Strain against Soil-borne Phytopathogen (토양병원균(土壤病原菌) 길항성(拮抗性) Streptomyces sp. A-2 활성물질(活性物質)의 특성(特性)에 관한 연구(硏究))

  • Park, Kyoung-Soo;Ryu, Jin-Chang
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.401-406
    • /
    • 1992
  • Antifungal substances against three plant pathogenic fungi, Phytophthora capsici, Phytophthora nicotianae var. parasitica and Rhizoctionaia solani were fractionated cultures of Streptomyces sp. A-2 strain isolated in Korean soils. Characterizations of active substances related with antagonistic effects were follows : 1. The excellent media which showed the transfer efficiency of antagonistic substances from Streptomyces sp. A-2 strain G.Y.B and B.H.I. among four that are glucose yeast broth (G.Y.B), $M\ddot{u}eller$, brain heart infusion(B.H.I.) and Czapek media. Active substances which were transfered into ethylacetate or left in residual aqueous phase did not lose antagonistic activity in spite of autoclavation. This indicated that bonds of these compounds were rigid enough to keep activity under such conditions. 2. Antagonistic substances were extracted according to adjustment of pH 3 or pH12 to 5 day-old B.H.I. broth cultures of Streptomyces sp. A-2 strain. Comparative analysis fluorescent bands on HPTLC to antagonsitic spectra against three phytopathogenic fungi indicated that major substances with antagonistic activity were extracted regardless of different pH adjustment to broth cultures. Since UV spectrum of these fractions scanned from 500nm to 200nm was similiar to that of polyene macrolide, major substances related with antagonistic activities were assumed to be polyene derivatives antibiotics.

  • PDF

Transfer of foreign Genes into the Bradyrhizobium japonicum and their Inoculation Effects on Soybean Plants (Bradyrhizobium japonicum에 외부유전자(外部遺傳子)의 도입(導入)과 대두(大豆)에 대한 접종효과)

  • Kim, Yong-Woong;Kim, Kil-Yong;Rhee, Young-Hwan;Kim, Kwang-Sik
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.25 no.4
    • /
    • pp.387-393
    • /
    • 1992
  • The fate of inoculum strain of Bradyrhizobium japonicum was studied by using genetically marked strain. RJB6 $str^rnal^rneo^r$. A spontaneous mutant of B. japonicum isolated from nodules was made to have antibiotic resistance against streptomycin and nalidixic acid. In order to make genetically marked strain, neomycine resistant gene(Tn5) was introduced into this spontaneous mutant by conjugation with E. coli containing pSUP2021. The southern hybridization was carried out to confirm the plasmid insertion. Hybridization of chromosome DNA using pSUP2021(Tn5) as a probe showed that Tn5 was located on the 4.9kb fragment of chromosome. Soybean seeds were planted into a soil previously cultivated with soybean and inoculated with different cell densities of marked strain. Fourty days after planting, the inoculation effects on nodule number, nodule fresh weight, plant height and nitrogen content in the plot inoculated with heavy cell suspension was a little better than those in the plot with low inoculation. The recovery percentage of the marked strains was about 12% in the plot inoculated with heavy density cell suspension, while 5% in the plot inoculated with low cell suspension.

  • PDF

Estimation of Multimedia Environmental Distribution for Benzoyl peroxide Using EQC Model (EQC 모델을 이용한 벤조일 퍼록사이드의 다매체 환경거동 예측)

  • Kim, Mi-Kyoung;Bae, Hee-Kyung;Song, Sang-Hwan;Koo, Hyun-Ju;Kim, Hyun-Mi;Choi, Kwang-Soo;Jeon, Sung-Hwan;Lee, Moon-Soon
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.10
    • /
    • pp.1090-1098
    • /
    • 2005
  • Benzoyl peroxide is very toxic to aquatic organisms but environmental concentration or exposure effects were not studied. Distribution of the chemical among multimedia environment was estimated using EQC(Equilibrium Criterion) model based on the physical-chemical properties to evaluate the risk of benzoyl peroxide in environment. Level I describes a situation that 100,000 kg of benzoyl peroxide is emitted into the environment which is equilibrium and steady-state without degradation and advection condition. Level II describes a situation that a constant rate of 1,000kg/h of benzoyl peroxide is continuously discharged into the environment which is equilibrium and steady-state with degradation and advection condition. Level III describes a situation that 1,000 kg/h of benzoyl peroxide is continuously introduced in each air, water, soil, and sediment compartment which are non-equilibrium and steady-state with degradation, advection, and inter-media transfer condition. In Level I and II calculations the chemical was distributed to soil(68.3%) and water(28.7%). In Level III calculation it was primarily distributed to soil(99.9%) and overall residence time was estimated to be 3.4 years. Benzoyl peroxide can be persistent in environment.

Nonlinear Three-dimensional Analysis of Piled Piers Considering Coupled Cap Rigidities (교량 말뚝기초의 캡강성을 고려한 비선형 3차원 해석)

  • Won Jin-Oh;Jeong Sang-Seom
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.6
    • /
    • pp.19-30
    • /
    • 2005
  • A coupled three-dimensional pile group analysis method was developed by considering complex behavior of sub-structures (pile-soil-cap) which included soil nonlinearity and the behavior of super-structure (pier). As an intermediate analysis method between FBPier 3.0 and Group 0.0, it took advantages of each method. Among the components of a pile group, individual piles were modeled with stiffness matrices of pile heads and soils with nonlinear load-transfer curves (t-z, q-z and p-y curves). A pile cap was modeled with modified four-node flat shell elements and a pier with three-dimensional beam element, so that a unified analysis could be possible. A nonlinear analysis method was proposed in this study with a mixed incremental and iteration techniques. The proposed method for a pile group subjected to axial and lateral loads was compared with othe. analytical methods (i.e., Group 6.0 and FBPier 3.0). It was found that the proposed method could predict the complex behavior of a pile group well, even though piles were modelled simply in this study by using pile head stiffness matrices which were different from the method introduced in FBPier 3.0.

Understory Evapotranspiration Measured by Eddy-Covariance in Gwangneung Deciduous and Coniferous Forests (광릉 활엽수림과 침엽수림에서 에디공분산으로 관측한 하부 군락의 증발산)

  • Kang, Min-Seok;Kwon, Hyo-Jung;Lim, Jong-Hwan;Kim, Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.11 no.4
    • /
    • pp.233-246
    • /
    • 2009
  • The partitioning of evapotranspiration (ET) into evaporation (E) and transpiration (T) is critical in understanding the water cycle and the couplings between the cycles of energy, water, and carbon. In forests, the total ET measured above the canopy consists of T from both overstory and understory vegetation, and E from soil and the intercepted precipitation. To quantify their relative contributions, we have measured ET from the floors of deciduous and coniferous forests in Gwangneung using eddy covariance technique from 1 June 2008 to 31 May 2009. Due to smaller eddies that contribute to turbulent transfer near the ground, we performed a spectrum analysis and found that the errors associated with sensor separation were <10%. The annual sum of the understory ET was 59 mm (16% of total ET) in the deciduous forest and 43 mm (~7%) in the coniferous forest. Overall, the understory ET was not negligible except during the summer season when the plant area index was near its maximum. In both forest canopies, the decoupling factor ($\Omega$) was about ~0.15, indicating that the understory ET was controlled mainly by vapor pressure deficit and soil moisture content. The differences in the understory ET between the two forest canopies were due to different environmental conditions within the canopies, particularly the contrasting air humidity and soil water content. The non-negligible understory ET in the Gwangneung forests suggests that the dual source or multi-level models are required for the interpretation and modeling of surface exchange of mass and energy in these forests.

Nonlinear Analysis of Shear Behavior on Pile-Sand Interface Using Ring Shear Tests (링전단시험을 이용한 말뚝 기초-사질지반 간 인터페이스 거동 분석)

  • Jeong, Sang-Seom;Jung, Hyung-Suh;Whittle, Andrew;Kim, Do-Hyun
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.5
    • /
    • pp.5-17
    • /
    • 2021
  • In this study, the shear behavior between pile-sandy soil interface was quantified based on series of rigorous ring shear test results. Ring shearing test was carried out to observe the shear behavior prior to failure and behavior at residual state between most commonly used pile materials - steel and concrete - and Jumunjin sand. The test was set to clarify the shear behavior under various confinement conditions and soil densities. The test results were converted in to representative friction angles for various test materials. Additional numerical analysis was executed to validate the accuracy of the test results. Based on the test results and the numerical validation, it was found that due to the dilative and contractive nature of sand, its interface behavior can be categorized in to two different types : soils with higher densities tend to show peak shear stress and moves on to residual state, while on the other hand, soils with lower densities tend to show bilinear load-transfer curves along the interface. However, the relative density and the confining stress was found to affect the friction angle only in the small train range, and converges as it progresses to large deformation. This study established a large deformation analysis method which can successfully simulate and predict the large deformation behavior such as ring shear tests. Moreover, the friction angle derived from the ring shear test result and verified by numerical analysis can be applied to numerical analysis and actual design of various pile foundations.

Transfer of Arsenic and Heavy Metals Existed as Acid Extractable and Reducible Formsfrom Flooded Soilsto Rice Plant (담수토양 내 비소 및 중금속의 존재형태(산추출형, 환원형)에 따른 식물체(벼) 전이특성)

  • Koh, Il-Ha;Kim, Jung-Eun;Ji, Won-Hyun
    • Journal of Environmental Impact Assessment
    • /
    • v.31 no.5
    • /
    • pp.296-309
    • /
    • 2022
  • This study investigated the mobility of inorganic elements (As, Cd, Pb, and Zn) that existed as acid extractable and reducible forms in flooded soils with a pot experiment involving rice cultivation. In general, it is known that soil inorganic elements that existed as an acid extractable form which includes exchangeable, carbonates, non-specifically sorbed, and specifically sorbed have mobility. However, the result of the experiment revealed that each inorganic elements of rice roots grown from flooded soils had different characteristics. The concentrations of Arsenic existed as both forms and the concentrations of cadmium and lead existed as a reducible form in the soils showed a high causal relationship with the concentrations of those elements in the roots of rice plants. The concentrations of zinc, an essential plant element, didn't show a causal relationship. Therefore it is necessary to consider the soil's environmental characteristics such as drained/flooded condition, oxidation/reduction condition, etc. for the mobility assessment of inorganic elements. The concentrations of the reducible form of arsenic, cadmium, and lead in flooded environment such as a paddy field should be also considered because the mobility of these elements combined with Fe/Mn increases in the reduction condition.

Salt Tolerance in Transgenic Pea (Pisum sativum L.) Plants by P5CS Gene Transfer

  • Najafi F.;Rastgar-jazii F.;Khavari-Nejad R. A.;Sticklen M.
    • Journal of Plant Biotechnology
    • /
    • v.7 no.4
    • /
    • pp.233-240
    • /
    • 2005
  • Slices of embryonic axis of mature pea (Pisum sativum L. cv. Green Arrow) seeds were used as explant. Transformation of explants was done via Agrobacterium tumefaciens bearing vector pBI-P5CS construct. The best results for inoculation of explants were obtained when they were immersed for 90 s at a concentration of $6{\times}10^8$ cell $ml^(-1)$ of bacterial suspension. Transformed pea plants were selected on $50\;mg\;l^(-1)$ kanamycin and successful transformants were confirmed by PCR and blotting. Transgenic plants were further analyzed with RT-PCR to confirm the expression of P5CS. Transgenic plants and non-transgenic plants were treated with different concentrations of NaCl 0 (control), 100, 150 and 200 mM in culture medium. Measurement of proline content indicated that transgenic plants produced more amino acid proline in response to salt in comparison with non-transgenic plants. Photosynthetic efficiency in transgenic plants under salt-stress was more than that of non-transgenic plants.