• Title/Summary/Keyword: Soil temperature change

Search Result 443, Processing Time 0.037 seconds

Evaluation of $N_2O$ Emissions with Changes of Soil Temperature, Soil Water Content and Mineral N in Red Pepper and Soybean Field (고추와 콩 재배에서 토양온도, 토양수분과 무기태질소 변화에 따른 아산화질소 배출 평가)

  • Kim, Gun-Yeob;So, Kyu-Ho;Jeong, Hyun-Cheol;Shim, Kyo-Moon;Lee, Seul-Bi;Lee, Deog-Bae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.880-885
    • /
    • 2010
  • Importance of climate change and its impact on agriculture and environment has increased with a rise of greenhouse gases (GHGs) concentration in Earth's atmosphere. Nitrous oxide ($N_2O$) emission in upland fields were assessed in terms of emissions and their control at the experimental plots of National Academy of Agricultural Science (NAAS), Rural Development Administration (RDA) located in Suwon city. It was evaluated $N_2O$ emissions at different soil water content, soil temperature, and mineral N conditions in a upland cultivating red pepper and soy bean. The results were as follows: 1) There were significant correlation between amount of $N_2O$ emissions and soil temperature, soil water content and mineral N conditions showed $0.528^{**}$, $0.790^{***}$ and $0.937^{***}$ in red pepper field and $0.658^{***}$, $0.710^{***}$ and $0.865^{***}$ in soybean field, respectively. 2) From the contribution rate analysis as to contribution factors for $N_2O$ emission, it appeared that contribution rate was in the order of mineral N (71.9%), soil moisture content (23.6%), and soil temperature (4.5%) in pepper field and mineral N (65.5%), soil moisture contents (19.2%), and soil temperature (15.2%) in soybean field.

Changes in Air Temperature and Surface Temperature of Crop Leaf and Soil (기온과 작물 잎 및 토양 표면온도의 변화양상 분석)

  • Lee, Byung-Kook;Jung, Pil-Kyun;Lee, Woo-Kyun;Lim, Chul-Hee;Eom, Ki-Cheol
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.209-221
    • /
    • 2015
  • Temperature is one of the most important factors affecting crop growth. The diurnal cycle of the scale factor [Tsc] for air temperature and the surface temperature of crop leaf and soil could be estimated by the following equation : $[Tsc]=0.5{\times}sin(X+C)+0.5$. The daily air temperature (E[Ti]) according to the E&E time [X] can be estimated by following equation using average (Tavg), maximum (Tm) and minimum (Tn) temperature : $E[Ti]=Tn+(Tm-Tn){\times}[0.5{\times}sin\;\{X+(9.646Tavg+703.65)\}+0.5]$. The crop leaf temperature in 24th June 2014 was high as the order of red pepper without mulching > red pepper with mulching > soybean under drought > soybean with irrigation > Chinese cabbage. The case in estimating crop leaf surface temperature using air temperature and soil surface temperature was lower in the deviation compared to the case using air temperature for Chinese cabbage and red pepper. These results can be utilized for the crop models as input data with estimation.

Soil Carbon Storage in Upland Soils by Biochar Application in East Asia: Review and Data Analysis (바이오차를 이용한 밭 토양 탄소 저장: 동아시아 지역 연구 리뷰 및 데이터 분석)

  • Lee, Sun-Il;Kang, Seong-Soo;Choi, Eun-Jung;Gwon, Hyo-Suk;Lee, Hyoung-Seok;Lee, Jong-Mun;Lim, Sang-Sun;Choi, Woo-Jung
    • Korean Journal of Environmental Agriculture
    • /
    • v.40 no.3
    • /
    • pp.219-230
    • /
    • 2021
  • BACKGROUND: Biochar is a solid material converted from agricultural biomass such as crop residues and pruning branch through pyrolysis under limited oxygen supply. Biochar consists of non-degradable carbon (C) double bonds and aromatic ring that are not readily broken down by microbial degradation in the soils. Due to the recalcitrancy of C in biochar, biochar application to the soils is of help in enhancing soil carbon sequestration in arable lands that might be a strategy of agricultural sector to mitigate climate change. METHODS AND RESULTS: Data were collected from studies on the effect of biochar application on soil C content conducted in East Asian countries including China, Japan and Korea under different experimental conditions (incubation, column, pot, and field). The magnitude of soil C storage was positively correlated (p < 0.001) with biochar application rate under field conditions, reflecting accumulation of recalcitrant black C in the biochar. However, The changes in soil C contents per C input from biochar (% per t/ha) were 6.80 in field condition, and 12.58 in laboratory condition. The magnitude of increment of soil C was lower in field than in laboratory conditions due to potential loss of C through weathering of biochar under field conditions. Biochar production condition also affected soil C increment; more C increment was found with biochar produced at a high temperature (over 450℃). CONCLUSION: This review suggests that biochar application is a potential measures of C sequestration in agricultural soils. However, as the increment of soil C biochar was affected by biochar types, further studies are necessary to find better biochar types for enhanced soil C storage.

Thermo-hydraulic Numerical Analysis for the Leakage of Buried District Heating Pipe (열수송관의 누수에 대한 열-수리적 수치해석)

  • Shin, Hosung;Hong, Seung-Seo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.3
    • /
    • pp.17-26
    • /
    • 2022
  • Domestic district heating system needs safety management guidelines using the change of surface temperature to detect damages to buried heat pipes. This paper performed numerical analyses on the temperature change of ground surface due to the burial and leakage of heat pipes. Temperature difference between the ground surface above the buried heat pipes and the surrounding surface rises to a crescendo between 3 am and 8 am. It is more significant in winter rather than in summer. Low groundwater level magnifies the temperature increase of the ground surface by the heat pipe, which is smaller in the asphalt pavement than in the bare soil. Without leakage of the buried heat pipe, the temperature increment on the ground surface by the heat pipe is within 3.0℃ in the bare soil and 3.5℃ in the asphalt pavement. Leakage of the supply heat pipe in the bare soil increases the temperature on the ground surface gradually in the summer but rapidly in the winter. Asphalt pavement shows a lower increment and increasing rate of the temperature on the ground surface due to pipe leakage than bare soil surface. And leakage on both sides of the supply pipe takes 1-2 days for the temperature difference from the surrounding soil surface to reach 10℃.

Effect of the climate change on groundwater recharging in Bangga watershed, Central Sulawesi, Indonesia

  • Sutapa, I Wayan
    • Environmental Engineering Research
    • /
    • v.22 no.1
    • /
    • pp.87-94
    • /
    • 2017
  • This study was conducted to determine the effect of the climate change to the level of groundwater recharging. This research was conducted on the watershed of Bangga by using the Soil Water Balance of MockWyn-UB model. Input data compose of evapotranspiration, monthly rainfall, watershed area, canopy interception, heavy rain factor and the influence of climate change factors (rainfall and temperature). The conclusion of this study indicates that there is a decreasing trend in annual groundwater recharge observed from 1995 to 2011. The amount of groundwater recharge varied linearly with monthly rainfall and between 3% to 25% of the rainfall. This result implies that rain contributed more than groundwater recharge to runoff and evaporation and the groundwater recharge and Bangga River discharge depends largely on the rainfall. In order to increase the groundwater recharge in the study area, reforestation programmes should be intensified.

Variation of Electrical Resistivity Characteristics in Sand-Silt Mixtures due to Temperature Change (온도변화에 따른 모래-실트 혼합토의 전기비저항 특성변화)

  • Park, Jung-Hee;Seo, Sun-Young;Hong, Seung-Seo;Kim, YoungSeok;Lee, Jong-Sub
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.10
    • /
    • pp.25-32
    • /
    • 2012
  • The application of electrical resistivity, which is related to charge mobility, has increased in the field of geotechnical engineering for the detection of underground cavern, faults and subsurface pollution level. The purpose of this study is to investigate the variation of electrical resistivity due to temperature change. Sand-silt mixture specimens prepared in the square freezing nylon cell are frozen in the frozen chamber. Four electrodes are attached on the four side walls of the freezing cell for the measurement of electrical resistance during temperature change. Electrical resistances of sand-silt mixtures with different degrees of saturation (0%, 2.5%, 5%, 10%, 20%, 40%, 60% and 100%) are measured as the temperature of specimens decrease from $20^{\circ}C$ to $-10^{\circ}C$. The electrical resistances determined by Ohm's law are transformed into the electrical resistivity by calibration. Experimental results show that the higher degree of saturation, the lower electrical resistivity at $20^{\circ}C$. Electrical resistivity gradually increases as the temperature decrease from $20^{\circ}C$ to $0^{\circ}C$. For the specimens with the degree of saturation of 15% or higer, electrical resistivity dramatically changes near the temperature of $0^{\circ}C$. In addition, very high electrical resistivity is observed regardless of the degree of saturation if the specimens are frozen. This study provides the fundamental information of electrical resistivity according to the soil freezing and temperature change demonstrates that electrical resistivity be a practical method for frozen soil investigation.

ESTIMATION OF SOIL MOISTURE WITH AIRBORNE L-BAND MICROWAVE RADIOMETER

  • Chang, Tzu-Yin;Liou, Yuei-An
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.26-28
    • /
    • 2008
  • Soil moisture plays an important role in the land-atmosphere energy balance because it governs the partitioning of energy through latent heat fluxes or evapotranspiration. From the numerous studies, it is evident that the L-band radiometer is a useful and effective tool to measure soil moisture. The objective of the study is to develop and to verify the soil moisture retrieval algorithms for the L-band radiometer system. Through the radiometer-observed brightness temperature, surface emissivity and reflectivity can be derived, and, hence, soil moisture. We collect field and L-band airborne radiometer data from washita92, SGP97 and SGP99 experiments to assist the development of the retrieval algorithms. Upon launching the satellite L-band radiometer such as ESA-sponsored SMOS (Soil Moisture and Ocean Salinity) mission, the developed algorithms may be used to study and monitor globe soil moisture change.

  • PDF

Assessment on Damage Risk of Corn for High Temperature at Reproductive Stage in Summer Season Based on Climate Scenario RCP 8.5 and 4.5

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Kim, Jun-Hwan;Sang, Wan-Gyu;Shin, Pyeong;Lee, Geon Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.1
    • /
    • pp.1-11
    • /
    • 2017
  • In order to assess risk of high temperature damages about corn during reproduction stages in the future, we carried out analysis of climate change scenarios RCP (Representative Concentration Pathway) 4.5 and RCP8.5 distributed by KMA (Korea Meteorological Administration) in 2012. We established two indexes such as average of annual risk days of high temperature damage which express frequency and strengthen index of high temperature damage. As results of producing maps for 157 cities and counties about average of annual risk days of high temperature damage during total periods of scenarios, the risk of high temperature in RCP8.5 was evaluated to increase at all over nation except inland area of Gangwon province, while RCP4.5 showed similar to present, or little higher. The maps of annual risk days of high temperature damage with 10 years interval in RCP8.5 prospected that the risk for damaging corn growth would increase rapidly from 2030's. The largest risk of high temperature damage in the future of RCP8.5 was analyzed at Changnyeong county located east-south inland area in Kyeongnam province, while the smallest of risk counties were Pyeongchang, Taebaek, Inje, and Jeongseon. The prospect at 12 counties which is large to produce corn at present and contains large plains have been showed that there will be only a little increase of risk of high temperature at Goesan, Yangpyeong, Hongcheon, Seosan, and Mooju until 2060's. But considering strengthen index of high temperature damage, most regions analyzed would be prospected to increase rapidly after 2030's. To cope with high temperature damage of corn in the future, we should develop various practical technologies including breeding adapted varieties and controlling cultivation periods.

An Experimental Study on the Dynamic Characteristics of Frozen Soil (동결토의 동적 특성에 관한 연구)

  • 서상열
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.1
    • /
    • pp.229-236
    • /
    • 2003
  • Ultrasonic propagation velocities of both the dilatational and shear waves through the weathered tuff soil sampled from the area tying between Ulanbator and Beijing were measured under temperature condition of near subzero by means of sing-around method. After comparing the results with obtained data on unfrozen water content, a linear relation between velocities and unfrozen water content was performed with high coefficient value. Experimental results of two kinds of rather uniform materials, namely, glass-beads and silica micro-beads, testified the similar linear relations. In addition, the change rate of dilatational wave velocities with the change of volumetric unfrozen water content was not dependent on soil type. Although a rational theory of the ultrasonic velocities dependence on the unfrozen water content is not yet proposed, the presented empirical relationships may suggest the appropriate evaluation to the effect of unfrozen water on dynamic characteristics of frozen soil.

Time series Analysis of Land Cover Change and Surface Temperature in Tuul-Basin, Mongolia Using Landsat Satellite Image (Landsat 위성영상을 이용한 몽골 Tuul-Basin 지역의 토지피복변화 및 지표온도 시계열적 분석)

  • Erdenesumbee, Suld;Cho, Gi Sung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.24 no.3
    • /
    • pp.39-47
    • /
    • 2016
  • In this study analysis the status of land cover change and land degradation of Tuul-Basin in Mongolia by using the Landsat satellite images that was taken in year of 1990, 2001 and 2011 respectively in the summer at the time of great growth of green plants. Analysis of the land cover change during time series data in Tuul-Basin, Mongolia and NDVI (Normalized Difference Vegetation Index), SAVI (Soil-Adjusted Vegetation Index) and LST (Land Surface Temperature) algorithm are used respectively. As a result shows, there was a decrease of forest and green area and increase of dry and fallow land in the study area. It was be considered as trends to be a land degradation. In addition, there was high correlation between LST and vegetation index. The land cover change or vitality of vegetation which is taken in study area can be closely related to the temperature of the surface.