• 제목/요약/키워드: Soil temperature change

검색결과 443건 처리시간 0.026초

기후변화에 따른 임하댐 유역의 GIS 기반 토양침식 추정 (GIS-based Estimation of Climate-induced Soil Erosion in Imha Basin)

  • 이길하;이근상;조홍연
    • 대한토목학회논문집
    • /
    • 제28권3D호
    • /
    • pp.423-429
    • /
    • 2008
  • 본 연구의 목적은 기후변화와 토지이용에 의한 미래 토양침식을 추정하는 것이다. 기후모형인 CCCma (Canadian Centre for Climate Modelling and Analysis)에 의해 예측된 강우자료 중 2030년에서 2050년까지의 자료를 이용하여 토양침식 모의를 수행한 후 관측값과 비교하였다. 즉, 현재의 토양침식 관측값과 예측된 미래의 조건에 따른 토양침식 결과에 대한 상대비교를 통해 기후변화가 토양침식에 미치는 영향을 분석하였다. 사회-경제 변화에 의해 예상되는 토지이용 변화와 기온 및 의 증가에 따른 식물성장에 대하여 포괄적으로 고려하였다. A2 시나리오와 B2 시나리오에 의해 예측된 2030년에서 2050년 기간의 모의된 강우평균을 1966년에서 1998년 사이의 관측 강우평균과 비교한 결과 각각 17.7%와 24.5% 증가하는 것으로 나타났다. B2 시나리오에 의한 토양침식량이 A2 시나리오에 의한 값보다 크게 예측되는 것을 확인할 수 있었으며, 총 6개 시나리오(일부 농촌 지역의 도시화 2개 시나리오, 전 농촌 지역의 도시화 2개 시나리오, 식물성장을 가정한 시나리오 2개) 중 일부 농촌 지역이 순차적 도시화가 이루어지는 시나리오를 제외한 나머지의 경우 토양침식이 48%에서 90%까지 증가하는 것을 알 수 있었다. 온도에 의한 식물성장속도의 가속, 높은 증발산을, 그리고 거름효과가 미치는 영향 등을 가정한 시나리오가 토양침식결과는 이를 가정하지 않은 시나리오보다 약 25% 정도 작게 예측되는 것을 확인할 수 있었다. 연구결과 본 대상유역의 미래에는 강우량과 토양침식량이 증가할 것으로 사료되므로, 이에 대한 관심을 가져야 할 것이다.

A Study of Arctic Microbial Community Structure Response to Increased Temperature and Precipitation by Phospholipid Fatty Acid Analysis

  • Sungjin Nam;Ji Young Jung
    • Proceedings of the National Institute of Ecology of the Republic of Korea
    • /
    • 제4권2호
    • /
    • pp.86-94
    • /
    • 2023
  • Climate change is more rapid in the Arctic than elsewhere in the world, and increased precipitation and warming are expected cause changes in biogeochemical processes due to altered microbial communities and activities. It is crucial to investigate microbial responses to climate change to understand changes in carbon and nitrogen dynamics. We investigated the effects of increased temperature and precipitation on microbial biomass and community structure in dry tundra using two depths of soil samples (organic and mineral layers) under four treatments (control, warming, increased precipitation, and warming with increased precipitation) during the growing season (June-September) in Cambridge Bay, Canada (69°N, 105°W). A phospholipid fatty acid (PLFA) analysis method was applied to detect active microorganisms and distinguish major functional groups (e.g., fungi and bacteria) with different roles in organic matter decomposition. The soil layers featured different biomass and community structure; ratios of fungal/bacterial and gram-positive/-negative bacteria were higher in the mineral layer, possibly connected to low substrate quality. Increased temperature and precipitation had no effect in either layer, possibly due to the relatively short treatment period (seven years) or the ecosystem type. Mostly, sampling times did not affect PLFAs in the organic layer, but June mineral soil samples showed higher contents of total PLFAs and PLFA biomarkers for bacteria and fungi than those in other months. Despite the lack of response found in this investigation, long-term monitoring of these communities should be maintained because of the slow response times of vegetation and other parameters in high-Arctic ecosystems.

인위적 온난화 및 강수 조절에 따른 소나무 묘목 세근 생산량과 고사율의 계절적 변화 (Short-term Effects of Warming and Precipitation Manipulation on Seasonal Changes in Fine Root Production and Mortality for Pinus densiflora Seedlings)

  • 한승현;장한나;손요환
    • 한국산림과학회지
    • /
    • 제107권1호
    • /
    • pp.43-49
    • /
    • 2018
  • 본 연구에서 33개월생 소나무 묘목을 대상으로 인위적 온난화 처리와 강수 조절에 의한 계절별 세근 생산량과 세근 고사율의 변화를 2년에 걸쳐 분석하였다. 온난화 처리는 적외선등을 이용하여 대조구 대비 대기온도가 $3.0^{\circ}C$ 높게 유지되도록 설정하였고, 강수 조절은 투명 판넬과 펌프를 이용하여 대조구(PC) 대비 30% 감소(PD) 또는 30% 증가(PI) 되도록 설정하였다. 온난화 처리는 세근 생산량 및 고사율에 통계적으로 유의한 영향을 주지 못하였고, 강수 조절은 세근 생산량($mm\;mm-2\;day^{-1}$)에만 유의한 영향을 주었다(PC: 3.57, PD: 4.59, PI: 3.02). 한편 온난화 처리 및 강수 조절과 계절간의 상호작용은 세근 생산량 및 고사율에 영향을 주지 못하였다. 그러나 온난화 처리 여부에 따라 토양 온도와 토양 수분이 각각 세근 생산량과 세근 고사율에 미치는 영향이 다르게 나타났다. 온난화 처리구는 세근 생산량의 계절적 변화가 주로 토양 온도에 영향(양의 상관관계)을 받았고, 세근 고사율은 주로 토양 수분의 영향(음의 상관관계)을 받았다. 반면에 온도 대조구에서는 세근 생산량은 주로 토양 수분의 영향(양의 상관관계)을 받았고, 세근 고사율은 토양 온도 및 수분과 유의한 관계가 나타나지 않았다. 이는 온난화가 진행됨에 따라 세근 생산량과 세근 고사율에 영향을 주는 기후인자가 달라질 수 있음을 시사한다.

기후변화 조건에서 수분구배 및 영양소 구배에 따른 굴참나무와 상수리나무 잎 형태적 특성의 생태지위 변화 (Variations in Ecological Niche of Quercus variabilis and Quercus acutissima Leaf Morphological Characters in Response to Moisture and Nutrient Gradient Treatments under Climate Change Conditions)

  • 박여빈;김의주;박재훈;김윤서;박지원;이정민;유영한
    • 한국환경복원기술학회지
    • /
    • 제27권2호
    • /
    • pp.43-53
    • /
    • 2024
  • This study attempted to elucidate the ecological niches and influencing environmental factors of Quercus variabilis and Quercus acutissima, which are representative deciduous broad-leaved trees in Korean forests, taxonomically close and genetically similar, under climate change conditions. Under climate change conditions induced by increased CO2 and temperature, soil moisture and nutrient environments were manipulated in four gradients. At the end of the growing, plants were harvested to measure growth responses, calculate ecological niches, and compare them with those of the control. Eperimental plants were grown for 180 days in a glass greenhouse designed with four gradients each for soil moisture and nutrient environments under climate change conditions induced by increased CO2 and temperature. After harvesting, growth responses of leaf traits were measured, ecological niches were calculated, and these were compared with those of the control groups. Furthermore, the responses of the two species' populations were interpreted using principal component analysis(PCA) based on leaf trait measurements. As a result, under climate change conditions, the ecological niche breadth for moisture environment was broader for Quercus variabilis than Quercus acutissima, whereas for the nutrient environment, Quercus acutissima exhibited a broader niche breadth than Quercus variabilis. And the rate of change in ecological niche breadth due to climate change decreased for Quercus variabilis in both moisture and nutrient environments, while for Quercus acutissima, it increased in the moisture environment but decreased in the nutrient environment. Additionally, in terms of group responses, both Quercus variabilis and Quercus acutissima expanded their ecological niches under climate change conditions in both soil moisture and nutrient conditions, with Quercus acutissima exhibiting a broader niche than Quercus variabilis under nutrient conditions. These results indicate that the changes in leaf morphological characteristics and the responses of individuals reflecting them vary not only under climate change conditions but also depending on environmental factors.

Simulation for the effect of vertical groundwater flux on the subsurface temperature distribution

  • 신지연;이강근
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 2006년도 총회 및 춘계학술발표회
    • /
    • pp.383-386
    • /
    • 2006
  • Subsurface temperature is affected by heat advection due to groundwater advection. Temperature-depth profile can be perturbed especially when there are significant vertical groundwater flux caused by external force such as injection or extraction. This research is to clarify the change of subsurface temperature distribution when the 40m x l0m sandy aquifer is stimulated by two different vertical flux($case1:\;{\pm}10^{-5}m^3/s,\;case2:\;{\pm}4{\times}10^{-5}m^3/s$) using a program called HydroGeoSphere. The resulting temperature distribution contour map shows pumping causes vertical attraction of water from deeper and warmer place which result in rising up isotherm. Additionally more injection/extraction rate, more vertical groundwater flux leads to faster Increase in temperature near the pumping well.

  • PDF

반복하중,온도변화 및 초기조건이 충적점토의 구조변화와 역학적 특성에 미치는 영향 (Influence of Repeated Loading, Alternation of Temperature and Initial Condition on the Change of Strizctural and Mechanical Characteristics of Alluvial Clayey Soil)

  • 유능구;유영선;최중대;김기성
    • 한국농공학회지
    • /
    • 제34권4호
    • /
    • pp.69-79
    • /
    • 1992
  • To estimate soil behavior and structural characteristics under the conditions of cyclic loading, freezing & thawing and initial state, several testing was performed and obtained following results. 1.After repeated freezing and thawing processes, original soil structure was destroyed and changed to globular structure from honeycomb or tube in its structure types. Also above processes resulted increasing the soil compression strain while decreasing the failure stress in stress-strain relationship and reached the soil structure into the mode of brittle fracture. Under cyclic loading conditions, soil cluster which was originally dispersed structure colloided with each other, seperated, and finally the soil failed due to the effect of overcompaction. 2.Through the stabilization processes seperated by four steps, the structure of soil skeleton was changed to quite different globular type. The degree of compressibility of soil was decreased in the normally consolidated zone, while the strength against external load increased due to soil particle stabilization. 3.Soil stress-strain chracteristics were largely influenced by repeated up and down processes of temperature. The maximum deformation was obtained in the case of temperature between 0 10˚C by the reseon of particle cluster reformation. 4.Soil compressibility was largely influenced by the optimum moisture content. Under freezing process, swelling could be found and its magnitude was proportional to the density of soil. 5.Density of soil was decreased as increasing the number or repeated freezing and thawing processes and the largest decreasing rate was found at the first turning point from freezing to thawing cycle.

  • PDF

불포화토에서의 복합적 습기와 열흐름의 분석모델 (A Coupled Moisture and Bent Flow Analysis Model in Unsaturated Soil)

  • Kim, Suk-Nam;Kim, Suk-Nam
    • 한국지반공학회논문집
    • /
    • 제18권5호
    • /
    • pp.67-72
    • /
    • 2002
  • 포장내의 흙들의 함수비는 강우, 온도 등의 기후적 요인에 따라 계절적으로 변화한다. 그것은 강우로인한 동수경사가 습기의 흐름을 유발하고, 온도변화로 인한 온도경사가 직.간접적으로 열흐름뿐만아니라 습기의 흐름을 유발하기 때문이다. 포장내의 흙들은 보통 불포화상태로 존재한다. 그리고 열의 흐름과 습기의 흐름은 상호간에 복잡한 작용을 하는 복합적인 과정들로 인식되어 왔다. 이 논문은 불포화토내의 복합적인 열의 흐름과 습기의 흐름에 대해 유한요소법을 이용한 하나의 일차원적 분석모델을 제시한다. 이 모델은 온도와 함수비 변화뿐만아니라 시간에 따른 동상을 예측하기 위하여 사용될 수 있다. 온도 및 함수비의 변화 그리고 동상의 예측은 포장의 설계 및 유지관리를 위해 의미 있는 일이 될 것이다. 이 모델은 다른 모델의 결과들과 비교를 통해서 검증된다.

모세관 현상에 의한 토양 환경에서의 지하수 거동에 관한 연구 (Studies on the Mobility of Groundwater in Soil Environment by Capillary Rise Observation)

  • 최수아;최은진;김동수
    • 한국물환경학회지
    • /
    • 제27권1호
    • /
    • pp.115-119
    • /
    • 2011
  • The mobility of groundwater in the soil environment has an important role in the soil environment and absorption of plant. Therefore, studies on the mobility of groundwater considering the physical and chemical properties of soil is very important. In this study, movement of water due to change in soil particle size were observed by capillary rise. The height of the capillaries was measured according to capillary diameter, temperature and solution concentration. The inner diameter of each capillary itself is 0.012, 0.016, 0.024, 0.027 cm, and experiments were performed at $22^{\circ}C$. As a result, the height of the capillaries decreased with increasing capillary diameter, and the solution temperature but increased with increasing concentration. Changes in the height of the capillaries are interpreted to related with surface tension by the Young-Laplace equation. Also on the mobility of groundwater, the increase of water and soil temperatures can be significant factors caused by ion strength and global warming as well as pores in the soil particles. The results of this study is considered to provide the basic data on the behavior of groundwater in the soil environment.

동결토의 압축강도에 관한 실험적 연구 (Experimental Studies on the Compressive Strength of the Frozen Soils)

  • 유능환;최중돈;유영선;조영택
    • 한국농공학회지
    • /
    • 제35권4호
    • /
    • pp.55-66
    • /
    • 1993
  • Upon freezing a soil swells due to phase change and its compression stress increase a lot. As the soil undergo thawing, however, it becomes a soft soil layer because the 'soil changes from a solid state to a plastic state. These changes are largely dependent on freezing temperature and repeated freezing-thawing cycle as well as the density of the soil and applied loading condition. This study was initiated to describe the effect of the freezing temperature and repeated freezing-thawing cycle on the unconfined compressive strength. Soil samples were collected at about 20 sites where soil structures were installed in Kangwon provincial area and necessary laboratory tests were conducted. The results could be used to help manage effectively the field structures and can be used as a basic data for designing and constructing new projects in the future. The results were as follows ; 1. Unconfined compressive strength decreased as the number of freezing and thawing cycle went up. But the strength increased as compression speed, water content and temperature decreased. The largest effect on the strength was observed at the first freezing and thawing cycle. 2. Compression strain went up with the increase of deformation speed, and was largely influenced by the number of the freezing-thawing cycle. 3. Secant modulus was responded sensitivefy to the material of the loading plates, increased with decrease of temperature down to - -10$^{\circ}$C, but was nearly constant below the temperature. Thixotropic ratio characteristic became large as compression strain got smaller and was significantly larger in the controlled soil than in the soil treated with freezing and thawing processes 4. Vertical compression strength of ice crystal(development direction) was 3 to 4 times larger than that of perpendicular to the crystal. The vertical compression strength was agreed well with Clausius-Clapeyrons equation when temperature were between 0 to 5C$^{\circ}$, but the strength below - 5$^{\circ}$C were different from the equation and showed a strong dependency on temperature and deformation speed. When the skew was less then 20 degrees, the vertical compression strength was gradually decreased but when the skew was higher than that, the strength became nearly constant. Almost all samples showed ductile failure. As considered above, strength reduction of the soil due to cyclic freezing-thawing prosses must be considered when trenching and cutting the soil to construct soil structures if the soil is likely subject to the processes. Especially, if a soil no freezing-thawing history, cares for the strength reduction must be given before any design or construction works begin. It is suggested that special design and construction techniques for the strength reduction be developed.

  • PDF

토양 수분 스트레스와 차광 처리가 천궁의 엽록소 형광반응 및 광합성에 미치는 영향 (Effect of Soil Water and Shading Treatment on Chlorophyll Fluorescence Parameters and Photosynthetic Capacity in Cnidium officinale Makino)

  • 김광섭;서영진;김동춘;남효훈;이부용;김준형
    • 한국약용작물학회지
    • /
    • 제28권6호
    • /
    • pp.412-420
    • /
    • 2020
  • Background: Measurement of chlorophyll fluorescence (CF) is useful for detection the ability of plants to tolerate environmental stresses such as drought, and excessive sunlight. Cnidium officinale Makino is highly sensitive to water stress and excessive sunlight. In this study, we evaluated the effect of soil water and shade treatment on the photosynthesis and leaf temperature change of C. officinale. Methods and Results: C. officinale was cultivated under uniform irrigation for 1 week drought stress (no watering) for 6 days. A significant decrease in CF was observed on the 5th day of withholding water (approximately 6% of soil water content) regardless of shading. Notably, the Rfd_lss parameter (CF decrease rates) with and without shade treatment was reduced by 73.1% and 56.5% respectively, at 6 days compared with those at the initial stage (0 day). The patterns of the degree of CF parameters corresponded to those of the soil water content and difference between leaf temperature (Ts) and air temperature (Ta). Meanwhile, CF parameters recovered to the 3 - 4 days levels after re-watering, while the soil water potential was completely restored. The suitable soil water content for C. officinale optimal growth was between -5 kPa and -10 kPa in this experiment. Conclusions: Lack of soil water in the cultivation of C. officinale, even with shading, decreased latent heat cooling through transpiration. As a result, heat dissipation declined, and the plant was subjected to drought stress. Soil water content plays a major role in photosynthesis and leaf temperature in C. officinale.