DOI QR코드

DOI QR Code

Variations in Ecological Niche of Quercus variabilis and Quercus acutissima Leaf Morphological Characters in Response to Moisture and Nutrient Gradient Treatments under Climate Change Conditions

기후변화 조건에서 수분구배 및 영양소 구배에 따른 굴참나무와 상수리나무 잎 형태적 특성의 생태지위 변화

  • Park, Yeo-Bin (Department of Life Science, Kongju National University) ;
  • Kim, Eui-Joo (Department of Life Science, Kongju National University) ;
  • Park, Jae-Hoon (Department of Life Science, Kongju National University) ;
  • Kim, Yoon-Seo (Department of Life Science, Kongju National University) ;
  • Park, Ji-Won (Department of Life Science, Kongju National University) ;
  • Lee, Jung-Min (Department of Life Science, Kongju National University) ;
  • You, Young-Han (Department of Life Science, Kongju National University)
  • 박여빈 (국립공주대학교 생명과학과) ;
  • 김의주 (국립공주대학교 생명과학과) ;
  • 박재훈 (국립공주대학교 생명과학과) ;
  • 김윤서 (국립공주대학교 생명과학과) ;
  • 박지원 (국립공주대학교 생명과학과) ;
  • 이정민 (국립공주대학교 생명과학과) ;
  • 유영한 (국립공주대학교 생명과학과)
  • Received : 2024.02.01
  • Accepted : 2024.03.04
  • Published : 2024.04.30

Abstract

This study attempted to elucidate the ecological niches and influencing environmental factors of Quercus variabilis and Quercus acutissima, which are representative deciduous broad-leaved trees in Korean forests, taxonomically close and genetically similar, under climate change conditions. Under climate change conditions induced by increased CO2 and temperature, soil moisture and nutrient environments were manipulated in four gradients. At the end of the growing, plants were harvested to measure growth responses, calculate ecological niches, and compare them with those of the control. Eperimental plants were grown for 180 days in a glass greenhouse designed with four gradients each for soil moisture and nutrient environments under climate change conditions induced by increased CO2 and temperature. After harvesting, growth responses of leaf traits were measured, ecological niches were calculated, and these were compared with those of the control groups. Furthermore, the responses of the two species' populations were interpreted using principal component analysis(PCA) based on leaf trait measurements. As a result, under climate change conditions, the ecological niche breadth for moisture environment was broader for Quercus variabilis than Quercus acutissima, whereas for the nutrient environment, Quercus acutissima exhibited a broader niche breadth than Quercus variabilis. And the rate of change in ecological niche breadth due to climate change decreased for Quercus variabilis in both moisture and nutrient environments, while for Quercus acutissima, it increased in the moisture environment but decreased in the nutrient environment. Additionally, in terms of group responses, both Quercus variabilis and Quercus acutissima expanded their ecological niches under climate change conditions in both soil moisture and nutrient conditions, with Quercus acutissima exhibiting a broader niche than Quercus variabilis under nutrient conditions. These results indicate that the changes in leaf morphological characteristics and the responses of individuals reflecting them vary not only under climate change conditions but also depending on environmental factors.

Keywords

Acknowledgement

본 연구는 환경부의 재원으로 한국환경산업기술원의 습지생태계 가치평가 및 탄소흡수 가치증진 기술개발사업의 지원을 받아 수행되었음(2022003630003).

References

  1. IPCC. 2023. Climate Change 2023: Synthesis Report, Summary for Policymakers. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. IPCC, Geneva, Switzerland, pp. 1-34.
  2. IPCC. 2014. Climate change 2014 synthesis report. IPCC: Geneva, Szwitzerland, pp.1059-1072.
  3. KLTER. 2012. Annual Report of Korean National Longterm Ecological Research. NIER. Seoul, Korea. 1477pp. (Korean Literature)
  4. Lee, T. B. 1961. Taxonomic Study of Korean Quercus Genus(2). Seoul National University Journal 10(D): 87-108. (in Korean)
  5. Lee, T. B. 1986. New Manuscript Arboriculture. Hyangmun Publishing Company. pp. 148-157. (in Korean)
  6. No, H. J., and Jeong, H. Y. 2002. Easy Statistics Analysis with STATISTICA. Hyungseong Publishing Company. (in Korean)
  7. Cho, K. T., Jang, R. H., Lee, S. H., Han, Y. S., You, Y. H. 2013. Effects of global warming and environmental factors of light, soil moisture, and nutrient level on ecological niche of Quercus acutissima and Quercus variabilis. Korean Journal of Ecology and Environment, 46(3), 429-439. (in Korean) https://doi.org/10.11614/KSL.2013.46.3.429
  8. Cho, K. T., Jeong, H. M., Han, Y. S., Lee, S. H. 2014. Variation of Ecological Niche of Quercus serrata under Elevated CO2 Concentration and Temperature. Korean Journal of Environmental Biology, 32(2), 95-101. (in Korean) https://doi.org/10.11626/KJEB.2014.32.2.095
  9. Chun, Y. J., Collyer, M. L., Moloney, K. A., Nason, J. D. 2007. Phenotypic plasticity of native vs. invasive purple loosestrife: a two state multivariate approach. Ecology, 88(6), 1499-1512. (in Korean) https://doi.org/10.1890/06-0856
  10. Ho, C. H., Lee, E. J., Lee, I., Jeong, S. J. 2006. Earlier spring in seoul, Korea. International Journal of Climatology: A Journal of the Royal Meteorological Society, 26(14), 2117-2127. (in Korean) https://doi.org/10.1002/joc.1356
  11. Hutchinson, G. E. 1957. Concluding remarks. In Cold Spring Harbor symposia on quantitative biology(Vol. 22, pp. 415-427). Cold Spring Harbor Laboratory Press.
  12. Garbutt, K., Bazzaz, F. A. 1984. The effects of elevated CO2 on plants: III. Flower, fruit and seed production and abortion. New Phytologist, 98(3), 433-446.
  13. Idso, K. E., Idso, S. B. 1994. Plant responses to atmospheric CO2 enrichment in the face of environmental constraints: a review of the past 10 years' research. Agricultural and Forest Meteorology, 69(3-4), 153-203.
  14. Idso, S., Kimball, B. 1997. Effects of long term atmospheric CO2 enrichment on the growth and fruit production of sour orange trees. Global Change Biology, 3(2), 89-96.
  15. Kim, S. Y., Kang, H. J. 2003. Effects of elevated atmospheric CO2 on wetland plants: a review. Korean Journal of Ecology and Environment, 36(4), 391-402. (in Korean)
  16. Kim, Z. S., Lee, S. W., Lim, J. H. 1991. Biosystematics of deciduous oaks in Korea based on allozyme variation. Korean Journal of Plant Taxonomy, 21(2), 95-103. (in Korean) https://doi.org/10.11110/kjpt.1991.21.2.095
  17. Lee H. J., You Y. H. 2009. Ecological niche breadth of Q. mongolica and overlap with Q. acutissima and Q. variabilis along with three environment gradients. Korean journal of environmental biology. 27(2): 191-197. (in Korean)
  18. Lee, M. J., Yee, S., Kim, H. J., Ji, Y. U., Song, H. K. 2002. Vegetation Structures and Ecological Niche of Quercus variabilis Community. JOURNAL - KOREAN FORESTRY SOCIETY, 91(4), 429-438. (in Korean)
  19. Lee, S. H., You, Y. H. 2012. Measurement of ecological niche of Quercus aliena and Q. serrata under environmental factors treatments and its meaning to ecological distribution. Journal of Ecology and Environment, 35(3), 227-234. (in Korean) https://doi.org/10.5141/JEFB.2012.027
  20. Levins, R. 1968. Evolution in changing environments: some theoretical explorations. Princeton University Press.
  21. McNaughton, S. J., Wolf, L. L. 1970. Dominance and the Niche in Ecological Systems: Dominance is an expression of ecological inequalities arising out of different exploitation strategies. Science, 167(3915), 131-139.
  22. Myneni, R. B., Keeling, C. D., Tucker, C. J., Asrar, G., Nemani, R. R. 1997. Increased plant growth in the northern high latitudes from 1981 to 1991. Nature, 386(6626), 698-702.
  23. Norby, R. J., Ledford, J., Reilly, C. D., Miller, N. E., O'Neill, E. G. 2004. Fine-root production dominates response of a deciduous forest to atmospheric CO2 enrichment. Proceedings of the national Academy of Sciences, 101(26), 9689-9693.
  24. Odum, E. P. 1969. The Strategy of Ecosystem Development: An understanding of ecological succession provides a basis for resolving man's conflict with nature. science, 164(3877), 262-270.
  25. Park, J. H., Chung, M. G., Sun, B. Y., Kim, K. J., Park, J. H., Park, C. W. 2005). Numerical analysis of Quercus L. subgenus Quercus(Fagaceae) in Korea. Korean Journal of Plant Taxonomy, 35(1), 57-80. (in Korean) https://doi.org/10.11110/kjpt.2005.35.1.057
  26. Park, W. K. 1993). Increasing atmospheric carbon dioxide and growth trends of Korean subalpine conifers - Dendrochronological analysis. Journal of Korean Society of Forest Science, 82(1), 17-25. (in Korean)
  27. Pianka E. R. 1994). Evolutionary ecology. 5th ed. Harper and Row New York 482.
  28. Ryou S. H. 2005. Forest vegetation of the Korean Peninsula(4): Quercus variabilis community. Forest and Culture, 14(4), 6-9. (in Korean)
  29. Saxe, H., Ellsworth, D. S., Heath, J. 1998. Tansley Review No. 98. Tree and forest functioning in an enriched CO2 atmosphere. New Phytologist(United Kingdom), 139(3).
  30. Schaber, J. and Badeck, F. W. 2005. Plant phenology in Germany over the 20th century. Regional Environmental Change, 5, 37-46.
  31. Whittaker RH.Levin SA.Root RB. 1973. Niche habitat and ecotope. The American Naturalist 107(955): 321-338.
  32. Yun, J. I. 2006. Climate change impact on the flowering season of Japanese cherry(Prunus serrulata var. spontanea) in Korea during 1941-2100. Korean Journal of Agricultural and Forest Meteorology, 8(2), 68-76. (in Korean)
  33. Kwon, S. S. 2023. Phytosociologcal Study on the Quercus variabilis Forest in Korea. Doctor's Thesis. Jeonbuk National University. (in Korean with English summary)
  34. Park, B. H. 2003. Studies on the niche of four herbal species along the environmental gradient. Master's Thesis. Seowon University. (in Korean with English abstract).
  35. Song, M. S. 2007. Analysis of distribution and association structure on the sawtooth oak(Quercus acutissima) forest in Korea. Doctor's Thesis. Changwon: University of Chanwon. (in Korean with English summary)