• Title/Summary/Keyword: Soil separation

Search Result 261, Processing Time 0.024 seconds

Comparing of Hydrograph Separation in deciduous and coniferous catchments using the End-Member Mixing Analysis (End-Member Mixing Analysis를 이용한 산림 소유역의 임상별 유출분리 비교)

  • Kim, Su-Jin;Choi, Hyung Tae
    • Journal of The Geomorphological Association of Korea
    • /
    • v.23 no.1
    • /
    • pp.77-85
    • /
    • 2016
  • To understand the difference of runoff discharge processes between Gwangneung deciduous and coniferous forest catchments, we collected hydrological data (e.g., precipitation, soil moisture, runoff discharge) and conducted hydrochemical analyses in the deciduous and coniferous forest catchments in Gwangneung National Arboretum in the northwest part of South Korea. Based on the end-member mixing analysis of the three storm events during the summer monsoon in 2005, the hillslope runoff in the deciduous forest catchment was higher 20% than the coniferousforest catchment during the firststorm event. Howerver, hillslope runoff increased from the second storm event in the coniferous catchment. We conclude that low soil water contents and topographical gradient characteristics highly influence runoff in the coniferous forest catchment during the first storm events. In general, coniferous forests are shown high interception loss and low soil moisture compared to the deciduous forests. It may also be more likely to be a reduction in soil porosity development when artificial coniferous forests reduced soil biodiversity. The forest soil porosity is an important indicator to determine the water recharge of the forest. Therefore, in order to secure the water resources, it should be managed coniferous forests for improving soil biodiversity and porosity.

Free-strain solutions for two-dimensional consolidation with sand blankets under multi-ramp loading

  • Zan Li;Songyu Liu;Cuiwei Fu
    • Geomechanics and Engineering
    • /
    • v.35 no.4
    • /
    • pp.385-393
    • /
    • 2023
  • To analyze the consolidation with horizontal sand drains, the plane strain consolidation model under multi-ramp loading is established, and its corresponding analytical solution is derived by using the separation of variables method. The proposed solution is verified by the field measurement data and finite element results. Then, the effects of the loading mode and stress distribution on consolidation and dissipation of pore pressure are investigated. At the same time, the influence of hydraulic conductivity and thickness of sand blankets on soil consolidation are also analyzed. The results show that the loading mode has a significant effect on both the soil consolidation rate and generation-dissipation process of pore water pressure. In contrast, the influence of stress distribution on pore pressure dissipation is obvious, while its influence on soil consolidation rate is negligible. To guarantee the fully drained condition of the sand blanket, the ratio of hydraulic conductivity of the sand blanket to that of clay layer kd/kv should range from 1.0×104 to 1.0×106 with soil width varying from 100 m to 1000 m. A larger soil width correspondingly needs a greater value of kd/kv to make sure that the pore water can flow through the sand blanket smoothly with little resistance. When the soil width is relatively small (e.g., less than 100 m), the effect of thickness of the sand blanket on soil consolidation is insignificant. And its influence appears obvious gradually with the increase of the soil width.

Finite element modeling for structure-soil interaction analysis of plastic greenhouse foundation (온실기초의 구조물-지반 상호작용 해석을 위한 유한요소 모델링)

  • Ryu, Hee-Ryong;Cho, Myeong-Whan;Yu, In-Ho;Moon, Doo-Gyung
    • Korean Journal of Agricultural Science
    • /
    • v.41 no.4
    • /
    • pp.455-460
    • /
    • 2014
  • In this study, structural behavior of plastic greenhouse foundation was investigated using rational finite element modeling for structures which have different material properties each other. Because the concrete foundation of plastic greenhouse and soil which surround and support the concrete foundation have very different material property, the boundary between two structures were modeled by a interface element. The interface element was able to represent sliding, separation, uplift and re-bonding of the boundary between concrete foundation and soil. The results of static and dynamic analysis showed that horizontal and vertical displacement of concrete foundation displayed a decreasing tendency with increasing depth of foundation. The second frequency from modal analysis of structure including foundation and soil was estimate to closely related with wind load.

Simple Parametric Analysis of the Response of Buried Pipelines to Micro-Tunneling-Induced Ground Settlements

  • Son, Moorak
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.11
    • /
    • pp.29-42
    • /
    • 2014
  • This paper investigates the effects of micro-tunneling on buried pipelines parametrically. A simplified numerical approach was developed and various parametric studies have been conducted to evaluate the effects of ground settlements on the response of buried pipelines. The controlled parameters included the pipe stiffness, ground loss magnitude, and pipe location with respect to a micro-tunnel. Maximum settlement and curvature along a pipeline have been investigated and compared among others for different conditions. In addition, the numerical results have been compared with a theoretical method by Attewell et al. (1986), which is based on a Winkler type linear-elastic solution. The comparison indicated that the response of buried pipes to micro-tunneling-induced ground settlements highly depends on the soil-pipe interaction including the separation and slippage of pipe from soil with the effects of the investigated parameters. Therefore, rather than using the theoretical method directly, it would be a better assessment of the response of buried pipelines to consider the soil-pipe interaction in more realistic conditions.

Determination of the Concentration and Isotope Ratio of Uranium in Soil and Water by Thermal Ionization Mass Spectrometry

  • Park, Jong-Ho;Park, Sujin;Song, Kyuseok
    • Mass Spectrometry Letters
    • /
    • v.5 no.1
    • /
    • pp.12-15
    • /
    • 2014
  • Thermal ionization mass spectrometry (TIMS) was used to determine the concentration and isotope ratio of uranium contained in samples of soil and groundwater collected from Korea. Quantification of uranium in ground water samples was performed by isotope dilution mass spectrometry. A series of chemical treatment processes, including chemical separation using extraction chromatography, was applied to the soil samples to extract the uranium. No treatments other than filtration were applied to the groundwater samples. Isotopic analyses by TIMS showed that the isotope ratios of uranium in both the soil and water samples were indistinguishable from those of naturally abundant uranium. The concentration of uranium in the groundwater samples was within the U.S. acceptable standards for drinking water. These results demonstrate the utility of TIMS for monitoring uranium in environmental samples with high analytical reliability.

Root Barrier and Fertilizer Effects on Soil CO2 Efflux and Cotton Yield in a Pecan-Cotton Alley Cropping System in the Southern United States

  • Lee, Kye-Han;An, Kiwan
    • Journal of Korean Society of Forest Science
    • /
    • v.95 no.2
    • /
    • pp.177-182
    • /
    • 2006
  • Little information is available on soil $CO_2$ efflux and crop yield under agroforestry systems. Soil $CO_2$ efflux, microbial biomass C, live fine root biomass, and cotton yield were measured under a pecan (Carya illinoinensis K. Koch)-cotton (Gossypium hirsutum L.) alley cropping system in southern USA. A belowground polyethylene root barrier was used to isolate tree roots from cotton which is to provide barrier and non-barrier treatments. The barrier and non-barrier treatment was randomly divided into three plots for conventional inorganic fertilizer application and the other three plots for organic poultry litter application. The rate of soil $CO_2$ efflux and the soil microbial biomass C were affected significantly (P < 0.05) by the fertilizer treatment while no significant effect of the barrier treatment was occurred. Cotton lint yield was significantly (P < 0.0 I) affected by the root barrier treatment while no effect was occurred by the fertilizer treatment with the yields being greatest ($521.2kg\;ha^{-1}$) in the root barrier ${\times}$ inorganic fertilizer treatment and lowest ($159.8kg\;ha^{-1}$) in the non-barrier ${\times}$ inorganic fertilizer treatment. The results suggest that the separation of tree-crop root systems with the application of inorganic fertilizer influence the soil moisture and soil N availability, which in tum will affect the magnitude of crop yield.

Optimization of Analytical Conditions for the Quantification of Explosive Compounds in Soil using HPLC (HPLC에 의한 토양내 화약물질 정량분석조건 최적화)

  • Cho, Jung-Hyun;Bae, Bum-Han;Kim, Kye-Hoon
    • Journal of Soil and Groundwater Environment
    • /
    • v.14 no.1
    • /
    • pp.51-60
    • /
    • 2009
  • A series of experiments was performed to develop an optimized analytical procedure for the analysis of explosives in soil by HPLC with soil samples collected at two live-fire military shooting ranges. The minimum amount of soil to be collected, Wmin, for the analysis of explosive compounds was 125g, based on the segregation and homogeneity constants that account for soil heterogeneity and non-homogeneous distribution of target explosive compounds. The optimization of extraction and HPLC analytical conditions were also studied based on analytes CV values. The most effective soil/ extractant ratio was estimated to be 10g-pretreated soil/20 mL acetonitrile as extractant. The optimized HPLC elution conditions for the separation of US EPA designated 14 explosive compounds, were column temperature 30${\circ}C$, eluents ratio of isopropanol: acetonitrile: water = 18 : 12: 70, and flow rate of 0.8 mUmin at 230 nm. However, UV wavelength 254 nm was better for the analysis of NB, 2,4-DNT, 2NT, 4NT, and 3NT.

A Study on the Estimation of Base Flow Using Base Flow Separation in the Daichung Dam Basin (대청댐유역의 기저유출분리를 통한 기저유량 산정에 관한 연구)

  • 김경수;조기태
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.7 no.1
    • /
    • pp.15-19
    • /
    • 2000
  • This study estimates the baseflow using the separation of daily streamflow hydrograph. For the separation of hydrograph, we used standard method. This method was presented by Institute of Hydrology in 1980. For the estimation of baseflow, we estimated the parameters of model using the relation of the catchment properties and the baseflow index. The baseflow is estimated by the results of the separation of daily streamflow hydrograph and is estimated 20.0%∼39.4%. Baseflow rates is high for larger catchments but low for smaller catchments. As the results of this study, there is no relation between rainfall and baseflow rates.

  • PDF

Evaluation of Separation Distance from the Temporary Storage Facility for Decontamination Waste to Ensure Public Radiological Safety after Fukushima Nuclear Power Plant Accident (후쿠시마 원전 사고 이후 일반인의 방사선학적 안전성 확보를 위한 제염폐기물 임시저장시설 이격거리 평가)

  • Kim, Min Jun;Go, A Ra;Kim, Kwang Pyo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.14 no.3
    • /
    • pp.201-209
    • /
    • 2016
  • The object of this study was to evaluate the separation distance from a temporary storage facility satisfying the dose criteria. The calculation of ambient dose rates took into account cover soil thickness, facility size, and facility type by using MCNPX code. Shielding effects of cover soil were 68.9%, 96.9% and 99.7% at 10 cm, 30 cm and 50 cm respectively. The on-ground type of storage facility had the highest ambient dose rate, followed by the semi-ground type and the underground type. The ambient dose rate did not vary with facility size (except $5{\times}5{\times}2m\;size$) due to the self-shielding of decontamination waste in temporary storage. The separation distances without cover soil for a $50{\times}50{\times}2m\;size$ facility were evaluated as 14 m (minimum radioactivity concentration), 33 m (most probably radioactivity concentration), and 57 m (maximum radioactivity concentration) for on-ground storage type, 9 m, 24 m, and 45 m for semi-underground storage type, and 6 m, 16 m, and 31 m for underground storage type.