• Title/Summary/Keyword: Soil residue

Search Result 295, Processing Time 0.024 seconds

Gasification melting characteristics of Automobile shredder residue in 5t/d shaft pilot plant (5톤/일 shaft형 pilot plant에서 자동차 폐차 잔재의 가스화 용융 특성)

  • Roh, SeonAh;Kim, WooHyun;Yun, JinHan;Hong, ByeongKwon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2010.11a
    • /
    • pp.160-160
    • /
    • 2010
  • ELVs (End-of-Vehicles) in Korea incrasease continusely because of increase of used car. Automobile Shredder Residue (ASR) is final product of ELVs (End-of-Vehicles) after recycling. Automobile Shredder Residue are composed of light and heavy fluffs and soil/dust. In this study, 5 ton/day pilot plant of shaft type has been designed and constructed and 15 times of test run were performed. For the stable operation, operation conditions such as the amount of fed ASR and cokes, air flow and temperature in the gasification melting system have been changed and the composition of the produced gas such as $H_2$, CO and $CH_4$ and air pollution compound including dioxin discharged from the stack have been analyzed.

  • PDF

Information Resources for the Establishment of Tolerances on Pesticide Residues in Golf Courses (골프장의 농약잔류 허용기준 설정을 위한 자료)

  • Lee, Su-Rae;Han, Dae-Sung;Lee, Mi-Gyung
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.2
    • /
    • pp.262-272
    • /
    • 1996
  • The objective of this paper is to present relevant information and for proposing legal standards on pesticide residues around golf courses. Among 67 pesticide ingredients used for the courses in Korea, 30 items necessary for standard setting were selected and theoretical residue limits were computed. Pesticide residue limits applicable to golf courses in Korea were for 16 pesticides in run-off water on the health and ecotoxicological bases and in soil on the health basis, as selected by practical use pattern. It is recommended to accumulate scientific data by continuous research efforts in order to justify the pesticide residue limits in run-off water and soils of golf courses.

  • PDF

Urea Application on Tobacco Stumps for the Control of Tobacco Mosaic Virus Infection (담배 잔근의 요소처리에 의한 담배 모자이크 바이러스 방제)

  • 박은경;김영호;채순용;강신웅;이윤환
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.16 no.2
    • /
    • pp.97-101
    • /
    • 1994
  • Tobacco stalks were cut and removed from the field after harvest, and urea was treated by placing it on the cutting portions of the remaining tobacco stumps. Relative virus infectivity of the root residue(compared to the fresh root residue infected with TMV) was reduced to 14.6% in December, 1993(before overwintering) and to 8.5% in March, 1994 just before transplanting, indicating that the TMV infectivity decreased remarkably, but was preserved still in the root residue in the field soil. There was no significant difference in infectivity of remaining root tissue between the treated and untreated root residue. However, as roots with urea treatment had been extensively decayed, only about one - fifth of the initial root volume remained after overwintering. TMV occurred less (by one - third) in the urea treatment than in the control, suggesting that urea treatment effectively provented tobacco from TMV infection by reducing the inoculum potential.

  • PDF

Effects of Irrigation and Ginseng Root Residue on Root Rot Disease of 2-Years-Old Ginseng and Soil Microbial Community in the Continuous Cropping Soil of Ginseng (인삼 연작토양에서 관수 및 인삼뿌리 잔사물이 토양 미생물상 및 뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Seo, Moon Won;Park, Kyung Hoon;Jang, In Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.345-353
    • /
    • 2018
  • Background: Some phenolics detected in the soil may inhibit the seed germination and seedling growth of ginseng (Panax ginseng). This study investigated the effect of irrigation and ginseng root residue addition on the soil microbial community and root rot disease in 2-year-old ginseng. Methods and Results: Each $20{\ell}$ pot was filled with soil infected with ginseng root rot pathogens, and irrigated daily with $2{\ell}$ of water for one month. After the irrigation treatment, ginseng fine root powder was mixed with the irrigated soil at a rate of 20 g per pot. In descending order, ${NO_3}^-$, electric conductivity (EC), exchangeable Na (Ex. Na) and K (Ex. K) decreased due to irrigation. In descending order, ${NO_3}^-$, EC, Ex. K, and available $P_2O_5$ increased with the additon of ginseng powder to the soil. The abundance of Trichoderma crassum decreased with irrigation, but increased again with the incorporation of ginseng powder. The abundance of Haematonectria haematococca increased with irrigation, but decreased with the incorporation of ginseng powder. The abundance of Cylindrocarpon spp. and Fusarium spp., which cause ginseng root rot, increased with the incorporation of ginseng powder. The abundance of Arthrobacter oryzae and Streptomyces lavendulae increased with irrigation. The abundance of Streptomyces lavendulae decreased, and that of Arthrobacter spp. increased, with the incorporation of ginseng powder. Aerial growth of ginseng was promoted by irrigation, and ginseng root rot increased with the incorporation of ginseng powder. Conclusions: Ginseng root residues in the soil affected soil nutrients and microorganisms, and promoted ginseng root rot, but did not affect the aerial growth of ginseng.

Effect of Hairy Vetch Green Manure on Nitrogen Enrichment in Soil and Corn Plant (토양 및 옥수수의 질소 집적에 미치는 헤어리벳치 녹비시용 효과)

  • Seo, Jong-Ho;Lee, Ho-Jin
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.38 no.4
    • /
    • pp.211-217
    • /
    • 2005
  • Fresh hairy vetch (HV) as a green manure equivalent to $240kg\;N\;ha^{-1}$ were incorporated into soil at corn planting in 1997 and 1998 to clarify the effects on changes of nitrogen (N) content in soil and corn plant. The influences of HV for the N of soil and plant were compared with those of ammonium nitrate (AN) in terms of mineralization and microbial biomass. During early decomposition of HV residue, the content of $NO_3-N$ in HV plot was as much as 60-70% of that in AN plot in surface soil of 0-15 cm depth. In addition, soil microbial biomass N (SMBN) by HV residue was increased up to $10-20mg\;kg^{-1}$ more than that by AN. Some mineral N from HV seemed to be released slowly until late corn growth stage judging from high content of $NO_3-N$ in both corn stem at silking stage and soil at harvest. There were no difference of N accumulations in corn plant at silking stage between HV and AN plots in both 1997 and 1998. At harvesting stage, a total of plant N accumulation in HV plot in 1997 was 8% less than that in AN plot while in 1998 it was 19% more. It was concluded that fresh HV green manure equivalent to $240kg\;N\;ha^{-1}$ was good enough to substitute the same amount with chemical N fertilizer by slow releasing of mineral N from HV residue in soil.

Residue and adsorptive capacity of paraquat in orchard soils (우리나라 과수원 토양의 Paraquat 잔류와 흡착능)

  • Chun, Jae-Chul;Kim, Sung-Eun;Park, Nam-Il;Lim, Sung-Jin
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.90-95
    • /
    • 1998
  • Soil residues of paraquat (1,1-dimethyl-4,4-dipyridinium dichloride) were determined in apple, pear, grape, and peach orchards for which 15 sites each were selected randomly from the corresponding large-scale production area throughout the country. Strong adsorption capacity measured using wheat bioassay (paraquat concentration required to reduce 50% root growth of wheat, SAC-WB) was also investigated on the orchard soils and the paraquat residue level was calculated against total SAC-WB values (SAC-WB value + paraquat residue). Average bound residue of paraquat on the 60 sites was 6.9 ppm, while paraquat residue in apple orchard reached 20.2 ppm which was the highest among the orchards and was almost double as compared with those in the other three orchards. Loosely bound residue of paraquat determined on the bound residue high top five soils occurred less than 0.5 ppm detection limit. Average SAC-WB value was 276.1 ppm and there were no any correlations between the SAC-WB value and clay content, organic matter content, and cation exchange capacity of the orchard soils. Paraquat residue level of the orchard soils against total SAC-WB recorded 2.43%.

  • PDF

Studies on Glutamic Acid Fermentation Residue Fertilizer I.Appliation rate of fertilizers and soil chemical properties of mulberry fields used glutemic Acid Fermention Residue Fertilizer (아미노산 발효부산물비료에 관한 연구 1. 아미노산 발효부산물비료 시용 양잠농가의 시비실태 및 토양화학성 변화에 관한 연구)

  • 이원주;이건영
    • Journal of Sericultural and Entomological Science
    • /
    • v.26 no.1
    • /
    • pp.21-24
    • /
    • 1984
  • The survey and soil analysis were carried to research the problems on mulberry fields applied glutamic acid fermentation residue fertilizer (GAFRF). Mulberry farmers of 364 from 110 si or Gun were chosen at random. The results were as follows; 1. Application rate of three elements applied on mulberry field was 25.8-12.8-16 in non-FAFRF using farmers, whereas 9.8-4.5-5.5kg/10a in GAFRF using farmers. 2. Application rate of organic matter applied on mulberry was 1158kg in non-GAFRF using farmers, whereas 329kg/10a in GAFRF using farmers. 3. Farmers of 53% using FAFRF did not applied three elements, 74% of them organic matter and 50% of them both of three elements and organic matter. These figures increased proportionally with application period of GAFRF. 4. The content of organic matter, availeble P2O5, K, Ca, Mg and pH in soil of appling GAFRF farmers was somewhat lower than in soil of non-appling GAFRF farmers.

  • PDF

The Principle and Application of Bioremediation (생물학적 복구법(Bioremediation)의 원리와 응용)

  • 정재춘;박창희;이성택
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.2
    • /
    • pp.3-13
    • /
    • 1996
  • The efficiency of bioremedation can be measured by the enumeration of microorganism, respiration rate and decomposition rate. The side-effect can be measured by using Daphnia, oyster larvae and rainbow trout. Oxygen transfer could be a problem in the on-site treatment. For these, hydrogen peroxide can be used for solvents such as benzenes. Oleophilic nitrogen and phosphorus can be added for the treatment of oil pollution. Mixed microbial population or pure culture can be used for the inoculum. The pure culture used is Pseudomonas and Phanerochate. Sometimes enzymes are added and Photodegadation is coupled to increase the efficiency. For the treatment of oil pollution residue on soil such as waste lubrication oil and machine oil sludges, top soil of 15cm∼20cm depth is plowed and oil residue with approximately 5% concentration is applied. The optimum pH range is 7∼8, the ratio of phosphorus to hydrocarbon is 1:800. Appropriate drainage is necessary. For the treatment of marine oil pollution residue, addition of oleophilic fertilizer is effective. Air pollutiant such as oder can be treated by bioremediation. In this case, biofilters or biosrubbers are used for the reactor.

  • PDF

Changes in Phytoavailability of Heavy Metals by Application of Limestone in the Farmland Soil nearby Abandoned Metal Mine and the Accumulation of Heavy Metals in Crops (폐금속 광산 주변 농경지 토양에서 석회석 처리에 의한 중금속의 식물유효도 변화 및 작물의 중금속 축적)

  • Yun, Sung-Wook;Yu, Chan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.54 no.3
    • /
    • pp.1-9
    • /
    • 2012
  • As topographic characteristics of Korea where 64 % of the national land area is forest and only 17 % is being used as farmland, remediation of farmland contaminated by heavy metals is a considerably important issue. In this study, as an alternative of practically and effectively remediating farmland which was abandoned as its crop plants exceeded maximum residue limit of heavy metals due to mining impact, applicability of stabilization method was examined through the pilot-scale field experiment. Three plots ($L{\times}W{\times}D=3m{\times}2m{\times}0.3m$) were installed at the selected farmland and in plot 1, only soil of the selected farmland was applied, in pilot 2, soil of the selected farmland plus 3 % limestone (w/w) was applied and in pilot 3, soil of the selected farmland plus 3 % limestone was applied and then uncontaminated soil was covered thereon (0.3 m). After that, seeds of radish, Korean cabbage and soybean of which characteristics of edible portions are different were sowed on each plot and cultivated. Afterwards, at a proper harvesting time (app. 80 days later), crop plants and soil were collected and phytoavailability (0.11 M HOAc extractable) of heavy metals in soil and accumulated concentration of heavy metal in edible portion of crop plants were examined. As a result, it was revealed that phytoavailability of heavy metals in soil added with limestone (plot 2) was clearly reduced compared with plot 1 (untreated) and owing to this treatment, accumulated concentration of heavy metals in edible portion of crops was also clearly reduced compared with plot 1. While radish cultivated in plot 1 had exceeded maximum residue limit of agricultural products, in particular, plot 2 using limestone had shown concentration lower than maximum residue limit and this plot had shown little difference with 3 plot where crop was cultivated in uncontaminated soil cover. Therefore, it was considered that for abandoned farmland like the selected farmland, reducing mobility and phytoavailability of heavy metals and reducing crop uptake through stabilization method would be an effective and practical alternative for producing safe agricultural products on a sustained basis.

Residue of Herbicide Napropamide and Change of Microorganism in Upland Soil Under Different Environmental Conditions (환경조건 차이에 따른 밭 토양중 제초제 Napropamide의 잔류 및 토양미생물상 변화)

  • Han, S.S.;Jeong, J.H.;Choi, C.G.
    • Korean Journal of Weed Science
    • /
    • v.14 no.4
    • /
    • pp.298-313
    • /
    • 1994
  • Residue of herbicide napropamide [N,N-dimethyl-2-(1-napthoxy)-propionamide] and change of micro-organism were investigated in upland soil under different environmental conditions. Half-lives of degradation were 28.3 days in the sterile soil and 14.6 days in the nonsterile soil, respectively. These results suggest that microorganism remarkably affected the decomposition of napropamide. Napropamide was rapidly degraded in order of 60% > 80% ${\geq}$ 40% soil moisture content of field water-holding capacity. Numbers of bacteria and total microbes in 60% moisture content was more than those in 40% moisture content. The more the napropamide degradation was rapid in lower soil pH. The total number of microorganism increased by lapse of time after treatment of napropamide at pH 5.5. The decomposition rate of napropamide was rapid in the order of $27^{\circ}C$ > $37^{\circ}C$ > $17^{\circ}C$. At $17^{\circ}C$ of soil temperature actinomycetes in napropamide treatment plot was more than these in nontreatment plot and also at $27^{\circ}C$ and $37^{\circ}C$ bacteria in napropamide treatment plot was more than those in nontreatment plot. Napropamide degradation was more rapid and number of microorganism was more abundant at the concentration of 10ppm than at that of 20ppm. The half-life of napropamide was longer in the clay loam soil than in the silty loam soil. The half times in laboratory test than in upland field. Numbers of microbes in the experiment under all the test environmental condition was not significantly different between treatment and nontreatment of napropamide.

  • PDF