• Title/Summary/Keyword: Soil physical and chemical properties

Search Result 380, Processing Time 0.028 seconds

Evaluation of Cleaning ability and Environmental Evaluation of Commercial Aqueous/Semi-aqueous Cleaning Agents (시판 수계/준수계 세정제의 세정성 및 환경성 평가 연구)

  • Cha, A.J.;Park, J.N.;Kim, H.S.;Bae, J.H.
    • Clean Technology
    • /
    • v.10 no.2
    • /
    • pp.73-87
    • /
    • 2004
  • In most of industrial fields, cleaning is employed for removing soils on their products or parts. Halogenated cleaning agents such as CFC-113, 1,1,1-TCE(1,1,1-trichloroethane), MC(methylene chloride) and TCE (trichloroethylene) have been used as cleaning ones in most of companies in the world since their excellent performance of cleaning ability and good material compatibility. However, CFC-113 and 1,1,1-TCE which are ozone destruction substances are not used any more in the advanced countries because of the which are ozone destruction substances are not used any more in the advanced countries because of the Montreal protocol. MC and TCE are now used restrictively at small part of industrial fields in most of countries since they are known to be hazardous or carcinogenic materials. Thus, it is indispensible that the alternative cleaning agents which are environmental-friendly and safe, and show good cleaning ability should be developed or utilized for replacement of the halogenated cleaning agents. Aqueous/semi-aqueous cleaning agents are evaluated to be promising alternative ones among various alternatives in environmental and economical view point. In this study, commercially available 12 aqueous and 6 semi-aqueous cleaning agents were selected and their physical properties, cleaning abilities, rinsing abilities and recycling of contaminated rinse water were measured and analyzed. Aqueous cleaning agents with higher wetting index showed better cleaning ability compared with those with lower wetting index. However wetting index did not have any correlation with cleaning ability in semi-aqueous cleaning agents. It was observed that soil concentration in aqueous and semi-aqueous cleaning agents should be maintained below the certain concentrations which depend on types of clearing agents. More than 70% soils in contaminated rinse water by some of aqueous and semi-aqueous clearing agents could be separated by simple settling method. This means that some cleaning agents with high oil-water separation efficiency will be effiective for recycling oil-contaminated rinse water. It was found that contaminated rinse water with aqueous agents was purified easiy by ultrafiltration method with PAN membrane of 30 kDa.

  • PDF

Prediction of Dispersal Directions and Ranges of Volcanic Ashes from the Possible Eruption of Mt. Baekdu

  • Lee, Seung-Yeon;Suh, Gil-Yong;Park, Soo-Yeon;Kim, Yeon-Su;Nam, Jong-Hyun;Yu, Seung-Hyun;Park, Ji-Hoon;Kim, Sang-Jik;Kim, Yong-Sun;Park, Sun-Yong;Yun, Ja-Young;Jang, Yu-Jin;Min, Se-Won;Noh, So-Jung;Kim, Sung-Chul;Lee, Kyo-Suk;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.51 no.1
    • /
    • pp.16-27
    • /
    • 2018
  • To predict the influence of volcano eruption on agriculture in South Korea we evaluated the dispersal ranges of the volcanic ashes toward the South Korea based on the possibilities of volcano eruption in Mt. Baekdu. The possibilities of volcano eruption in Mt. Baekdu have been still being intensified by the signals including magmatic unrest of the volcano and the frequency of volcanic earthquakes swarm, the horizontal displacement and vertical uplift around the Mt. Baekdu, the temperature rises of hot springs, high ratios of $N_2/O_2$ and $_3He/_4He$ in volcanic gases. The dispersal direction and ranges and the predicted amount of volcanic ash can be significantly influenced by Volcanic Explosivity Index (VEI) and the trend of seasonal wind. The prediction of volcanic ash dispersion by the model showed that the ash cloud extended to Ulleung Island and Japan within 9 hours and 24 hours by the northwestern monsoon wind in winter while the ash cloud extended to northern side by the south-east monsoon wind during June and September. However, the ash cloud may extent to Seoul and southwest coast within 9 hours and 15 hours by northern wind in winter, leading to severe ash deposits over the whole area of South Korea, although the thickness of the ash deposits generally decreases exponentially with increasing distance from a volcano. In case of VEI 7, the ash deposits of Daejeon and Gangneung are $1.31{\times}10^4g\;m^{-2}$ and $1.80{\times}10^5g\;m^{-2}$, respectively. In addition, ash particles may compact close together after they fall to the ground, resulting in increase of the bulk density that can alter the soil physical and chemical properties detrimental to agricultural practices and crop growth.

Density Effects on the Size of 2-1 Korean Pine and 1-1 Jack Pine Nursery Stock (잣나무 2-1 묘(苗)와 방크스소나무 1-1 묘(苗)의 생장(生長)에 미치는 밀도효과(密度効果))

  • Ma, Sang Kyu
    • Journal of Korean Society of Forest Science
    • /
    • v.32 no.1
    • /
    • pp.1-8
    • /
    • 1976
  • One of the most common needle leaf species used in planting in Korea is korean pine (Pinus koraiensis S. et Z.), and jack pine (Pinus banksiana Lamb.) is one of the test species for suitability. The relation of nursery bed density of 2-1 korean pine and 1-1 jack pine was studied at the Kwang Nung Nursery, Central Branch Station of Forest Research Institute, and about 40km north of Seoul. Nursery bed density of 2-1 korean pine, which ranged from 36 to 324 trees per square meters and of 1-1 jack pine, which ranged from 25 to 169 trees per square meters, had a marked effect on caliper, height, dry weight and percent and amount of plantable stock. The soil physical and chemical properties is silt plus clay, 50.55 percent; organic matter, 2.09 percent; total nitrogen, 0.13 percent; available phosphorus, 253.25 ppm; exchangeable potash, 0.46 m.e/100g; and pH, 5.58. As the density of the nursery seedling stand of 2-1 korean pine increases, the average tree height increases (Fig. 1A), but in 1-1 jack pine density do not affect to increase or decrease the average tree height. As the density of nursery bed increases, the average stem caliper (at 2cm above ground line) and dry weight decrease (Fig. 1B), but the decreasing rate is more seriously in 1-1 jack pine than 2-1 korean pine (Fig.5). As increasing the density of nursery bed, the T/R ratio of trees of the test species increase. Also the dry weight of leaf, stem and root parts are decreasing in proportion to the increase of stand density, but the drop rate of jack pine is more rapid than korean pine (table. 1) The patent facts of difference of growth characteristics between 2-1 korean pine and 1-1 jack pine were studied. These facts should be used to select the scale of stand density at the nursery bed or the plantable site. Korean pine is demanded high density, on the other hand in jack pine low density are more suitable to manage the stand density. Stands of comparatively low density had the greatest percentage of high-quality stock, and the stands of high density had less than the high quality trees of low density. An important criterion of the best density is percent and number of high-quality trees produced per square meter of bed area. Stem caliper and stem height of seedling is used in most public nurseries to sort seedling into plantable grades. The stock grade standard has set at 4.5mm caliper and 16cm height of 2-1 korean pine as the minimum desired stem caliper and height. By the result studies, the plantable stock grade standards of 2-1 korean pine used at stem height 16cm and stem caliper 4.5mm from public nurseries should be reformed to stem height 18cm and stem caliper 4.0mm by the growth characteristics and the tree distribution of stem height and caliper of relation to density. For the 2-1 korean pine, best density should be about 160 to 200 trees per square meter according to soil fertility. For the 1-1 jack pine, the suitable standard of plantable stock should be at stem height 25cm and caliper 6mm (at 2cm above ground line) and best density was about 100 to 120 trees.

  • PDF

A review of factors that regulate extracellular enzyme activity in wetland soils (습지 토양 내 체외효소 활성도를 조절하는 인자에 대한 고찰)

  • Kim, Haryun
    • Korean Journal of Microbiology
    • /
    • v.51 no.2
    • /
    • pp.97-107
    • /
    • 2015
  • Wetlands constitute a transitional zone between terrestrial and aquatic ecosystems and have unique characteristics such as frequent inundation, inflow of nutrients from terrestrial ecosystems, presence of plants adapted to grow in water, and soil that is occasionally oxygen deficient due to saturation. These characteristics and the presence of vegetation determine physical and chemical properties that affect decomposition rates of organic matter (OM). Decomposition of OM is associated with activities of various extracellular enzymes (EE) produced by bacteria and fungi. Extracellular enzymes convert macromolecules to simple compounds such as labile organic carbon (C), nitrogen (N), phosphorus (P), and sulfur (S) that can be easily taken up by microbes and plants. Therefore, the enzymatic approach is helpful to understand the decomposition rates of OM and nutrient cycling in wetland soils. This paper reviews the physical and biogeochemical factors that regulate extracellular enzyme activities (EEa) in wetland soils, including those of ${\beta}$-glucosidase, ${\beta}$-N-acetylglucosaminidase, phosphatase, arylsulfatase, and phenol oxidase that decompose organic matter and release C, N, P, and S nutrients for microbial and plant growths. Effects of pH, water table, and particle size of OM on EEa were not significantly different among sites, whereas the influence of temperature on EEa varied depending on microbial acclimation to extreme temperatures. Addition of C, N, or P affected EEa differently depending on the nutrient state, C:N ratio, limiting factors, and types of enzymes of wetland soils. Substrate quality influenced EEa more significantly than did other factors. Also, drainage of wetland and increased temperature due to global climate change can stimulate phenol oxidase activity, and anthropogenic N deposition can enhance the hydrolytic EEa; these effects increase OM decomposition rates and emissions of $CO_2$ and $CH_4$ from wetland systems. The researches on the relationship between microbial structures and EE functions, and environmental factors controlling EEa can be helpful to manipulate wetland ecosystems for treating pollutants and to monitor wetland ecosystem services.

Soil properties in Panax ginseng nursury by parent rock (모암별 인삼묘포지의 토양특성에 관한 연구)

  • Min, Ell-Sik;Park, Gwan-Soo;Song, Suck-Hwan;Lee, Sam-Woong
    • Korean Journal of Agricultural Science
    • /
    • v.30 no.1
    • /
    • pp.31-40
    • /
    • 2003
  • A research has been done for growing characteristics of Korean ginseng in Geumsan of Chungnam Province. It had been made to determine the transitional element concentrations of the rocks, divided by biotitic granite(GR) and phyllite(PH). The physical and chemical properties of their weathering soils and ginseng nursery soils were analyzed. The texture in the GR weathering and ginseng nursery soils were sandy clay, and the texture of the PH weathering and ginseng nursery soils were heavy or silty clay. The bulk densities of the GR and PH weathering soils were $1.21{\sim}1.32g/cm^3$ and $1.26{\sim}1.38g/cm^3$, respectively. Also, the bulk densities of the GR and PH ginseng nursery soils were $1.02{\sim}1.10g/cm^3$, respectively. The pH (4.80) of the GR weathering soil were lower than the pH of the PH(5.34) weathering soil. The pH in the 2 year and 4 year-ginseng nursery soil of the GR were 4.39 and 4.40. In addition, those of the PH were 5.24 and 5.34, respectively. The difference in pH of the two nursery soils could be from the pH difference between the two parent materials. The organic matter contents of the GR weathering soils(0.24%) were higher than those of the PH(1.02%) weathering soils. The organic matter of the 2 and 4 year-ginseng GR nursery soils were 0.87% and 1.52%, and of the PH nursery soils were 2.06% and 2.96%, respectively. The total nitrogen contents of the GR weathering soils were 259.43ppm and of the PH weathering soils were 657.22ppm. Those of 2 and 4 year-ginseng GR nursery soils were 588.04ppm and 657.22ppm and those of the PH nursery soils were 1037.72ppm and 1227.96ppm, respectively. The nitrate and ammonium contents of the GR weathering soils were the extremely small, and those of the PH weathering soils were 6.7ppm and 9.94ppm. Those of 2 year-ginseng GR nursery soils(223.09ppm and 26.96ppm) were higher than those of PH(19.46ppm and 8.23ppm) nursery soils. And those of 2 year-ginseng PH nursery soils(14.22ppm and 16.84ppm) were lower than those of PH(306.93ppm, 34.21ppm) nursery soils. The difference was due to fertilizer types and more deposits of nitrate after oxidation of ammonium. The phosphate contents of the GR and PH weathering soils were 14.41ppm and 38.60ppm. Those of GR 2 and 4 year-ginseng nursery soils were 46.89ppm and 102.44ppm and those of the PH nursery soils were 147.04ppm and 38.60ppm. The cation exchange capacities of the GR weathering soils were 12.34me/100g and those of the PH weathering soils were 15.40me/100g. Those of 2 and 4 year-ginseng GR nursery soils were 15.80me/100g and 7.70me/100g and those of PH nursery soils were 12.14me/100g and 12.83me/100g. All of exchangeable cation($K^+$, $Ca^{2+}$, $Mg^{2+}$, $Na^+$) contents in the nursery soils were higher than those in the weathering soils. The $SO_4{^2-}$ contents of the weathering soils in both of the GR(5.98ppm) and PH(9.94ppm) were higher than those of the GR and PH ginseng nursery soils. The $Cl^-$) contents of the GR and PH weathering soils were a very small and those of the nursery soils(2-yr GR: 39.06ppm, 4-yr GR: 273.43ppm, 2-yr PH: 66.41ppm, 4-yr PH: 406.24ppm) were high because of fertilizer inputs.

  • PDF

The Study on the Effects of the Economical Use of Irrigation Water by Different Irrgation Periods and Its Methods on the Growth, Yield and the Factors of Rice Plants. (절수의 시기 및 방법의 차이가 수도생육 수량과 기타 실용형태질 미치는 영향)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.10 no.1
    • /
    • pp.1388-1393
    • /
    • 1968
  • Higher yield in rice paddies is greatly dependent on adequately balanced and timely supply of water. A majority of rice paddy in Korea is generally irrigated by rainfall, but in many cases it has to be supplemented by artificial irrigation for optimum rice culture. Although the water requirement of rice plant is far higher than that of other crops, submerged condition of rice paddy is not necessarily required. The moisture requirement of rice plant varies with its growing stages, and it is possible to increase the irrigation efficiency through reduction of water loss due to percolation in rice paddies. An experiment was conducted on the effectiveness of economical use of water by different irrigation period and different method of cultivation. The experimental plots were set up by means of randomized block design with three duplications; (a) Alltime submerged (b) Economically controlled, and (c) Extremely controlled. Three different irrigation periods were (a) Initial stage (b) Inter-stage, and (c) last stage. The topsoil of the three plots were excavated to the depth of 30cm and then compacted with clay of 6 cm thickness. Thereafter, they were piled up with the excavated top soils, leveled and cored with clay of 6cm thickeness arround footpath in order to prevent leakage. The results obtained frome the experiments are as follows; (1) There is no difference among the three experiment plots in terms of physical and chemical contditions, soil properties, and other characteristics. (2) Colulm length and ear length are not affected by different irrigation methdos. (3) There is no difference in the mature rate and grain weight of rice for the three plots. (4) The control plot which was irrigated every three days shows an increased yield over the all the time submerged plot by 17 persent. (5) The clay lined plot whose water holding capacity was held days long, needs only to be irrigated every 7 days. (6) The clay lined plot showes an increased yield over the untreated plot; over all the time submerged plot by 18 percent, extremely controlled plot by 18 percent, and economically controled plot by 33 percent.

  • PDF

The Analysis of Productivity of Oak Stand following to Site Quality and Crown Class (I) (입지(立地)와 수형급(樹型級)에 따른 참나무임분(林分)의 생산력(生産力) 분석(分析) (I))

  • Kim, Chi Moon;Kwon, Ki Won;Song, Ho Kyong;Moon, Heung Kyu;Park, Hong Joon
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.1
    • /
    • pp.9-21
    • /
    • 1983
  • The structures of oak stands were studied in relation to their productivity. Three plots classified by the site quality following to altitude, were selected on the oak stand located at Naryongri Eunsanmyun Buyeogun. The site qualities of the stand studied were generally estimated to be moderate in respect to some soil physical and chemical properties. Quercus variabilis was dominant species in the vegetation composition of the stand studied. The crown densities of the stand were varied from 65.4% in plot I to 78.2% in plot III and the parts, occupied with oak trees, ranged from 44.4% in plot I to 65.9% in plot III in the density. In the contrast to crown density, the growing stocks of oak trees ranged from $3.937m^3$ in plot I (73.4% of plot total) to $2.075m^3$ in plot III (84.3% of plot total). The occupied ratios, measured by crown class, exhibited dissimilarity between crown projection area and volume, and also the ratios brought into different patterns by plot. Highly significant correlations were proved between crown projection areas and volumes of individual oak trees by plot, but not proved in the relations by crown class. The cumulative growth, current annual increment and mean annual increment displayed various patterns by plot and by crown class in the heights, D. B. H. s and volumes of oak trees. The maximum values of current annual increment of height were generally recorded in 10 to 20 years, earlier than those of D. B. H. The mean annual increment of height, D. B. H. and volume maintained similar levels after about 10 years and fluctuated irregularly. The crown projection area and volume following to thinning decreased in the order of the thinning methods of grade A < grade B < crown thinning$90m^3/ha$ in about 40 years in the productivity of volume of the oak stand studied.

  • PDF

무령왕릉보존에 있어서의 지질공학적 고찰

  • 서만철;최석원;구민호
    • Proceedings of the KSEEG Conference
    • /
    • 2001.05b
    • /
    • pp.42-63
    • /
    • 2001
  • The detail survey on the Songsanri tomb site including the Muryong royal tomb was carried out during the period from May 1 , 1996 to April 30, 1997. A quantitative analysis was tried to find changes of tomb itself since the excavation. Main subjects of the survey are to find out the cause of infiltration of rain water and groundwater into the tomb and the tomb site, monitoring of the movement of tomb structure and safety, removal method of the algae inside the tomb, and air controlling system to solve high humidity condition and dew inside the tomb. For these purposes, detail survery inside and outside the tombs using a electronic distance meter and small airplane, monitoring of temperature and humidity, geophysical exploration including electrical resistivity, geomagnetic, gravity and georadar methods, drilling, measurement of physical and chemical properties of drill core and measurement of groundwater permeability were conducted. We found that the center of the subsurface tomb and the center of soil mound on ground are different 4.5 meter and 5 meter for the 5th tomb and 7th tomb, respectively. The fact has caused unequal stress on the tomb structure. In the 7th tomb (the Muryong royal tomb), 435 bricks were broken out of 6025 bricks in 1972, but 1072 bricks are broken in 1996. The break rate has been increased about 250% for just 24 years. The break rate increased about 290% in the 6th tomb. The situation in 1996 is the result for just 24 years while the situation in 1972 was the result for about 1450 years. Status of breaking of bircks represents that a severe problem is undergoing. The eastern wall of the Muryong royal tomb is moving toward inside the tomb with the rate of 2.95 mm/myr in rainy season and 1.52 mm/myr in dry season. The frontal wall shows biggest movement in the 7th tomb having a rate of 2.05 mm/myr toward the passage way. The 6th tomb shows biggest movement among the three tombs having the rate of 7.44mm/myr and 3.61mm/myr toward east for the high break rate of bricks in the 6th tomb. Georadar section of the shallow soil layer represents several faults in the top soil layer of the 5th tomb and 7th tomb. Raninwater flew through faults tnto the tomb and nearby ground and high water content in nearby ground resulted in low resistance and high humidity inside tombs. High humidity inside tomb made a good condition for algae living with high temperature and moderate light source. The 6th tomb is most severe situation and the 7th tomb is the second in terms of algae living. Artificial change of the tomb environment since the excavation, infiltration of rain water and groundwater into the tombsite and bad drainage system had resulted in dangerous status for the tomb structure. Main cause for many problems including breaking of bricks, movement of tomb walls and algae living is infiltration of rainwater and groundwater into the tomb site. Therefore, protection of the tomb site from high water content should be carried out at first. Waterproofing method includes a cover system over the tomvsith using geotextile, clay layer and geomembrane and a deep trench which is 2 meter down to the base of the 5th tomb at the north of the tomv site. Decrease and balancing of soil weight above the tomb are also needed for the sfety of tomb structures. For the algae living inside tombs, we recommend to spray K101 which developed in this study on the surface of wall and then, exposure to ultraviolet light sources for 24 hours. Air controlling system should be changed to a constant temperature and humidity system for the 6th tomb and the 7th tomb. It seems to much better to place the system at frontal room and to ciculate cold air inside tombs to solve dew problem. Above mentioned preservation methods are suggested to give least changes to tomb site and to solve the most fundmental problems. Repairing should be planned in order and some special cares are needed for the safety of tombs in reparing work. Finally, a monitoring system measuring tilting of tomb walls, water content, groundwater level, temperature and humidity is required to monitor and to evaluate the repairing work.

  • PDF

Studies on the Effects of Various Methods of Rotation Irrigation System Affecting on The Growth, Yield of Rice Plants and Its Optimum Facilities (수환관개방법의 차이가 수도생육 및 수량에 미치는 영향과 그 적정시설에 관한 연구)

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.12 no.2
    • /
    • pp.1937-1947
    • /
    • 1970
  • This experiment was conducted, making use of the 'NONG-RIM No, 6' a recommended variety of rice plant for the year of 1969. Main purpose of the experiment are to explore possibilities of; a) ways and means of saving irrigation water and, b) overcoming drought at the same time so that an increaded yield in rice production could be resulted in Specifically, it was tried to determine the effects of the Rotation Irrigation method combined with differentiated thickess of Lining upon the growth and Yield of rice production. Some of the major finding are summarized in the follows. 1) The Different thicknesses show a significant relationship with the weight of 1000 grains. In the case of 3cm Lined plot, the grain weight is 39.0 Grams, the heaviest. Next in order is 6 cm lined plnt, 5 day control plot, 6 day control plot. 2) In rice yield, it is found that there is a considerably moderate signicant relationship with both the different thickness of lining and the number of irrgation, as shown in the table No,7. 3) There is little or no difference among different plot in terms of; a) physical and chemical properties of soil, b) quality of irrgation water, c) climatic condition, and rainfalls. 4) It is found that there is no significant relationship between differences in the method of rotation irrgation and the number of ears per hill because of too much rainydays and low temperature during irrigation season. 5) In uyny1-treated plots, it is shown that there is on difference among different plots, but the irrigation water requirement saved as much as 1/2 to actual irrigation water compare to uncontroled plot. 6) The irrigation water requirement for 48 days is saved as much 67% compared to uncontroled plot, the order are; the 9cm lined plot, the plot of vinyl with no hole, the plot with a hole of $1cm/m^2$ as shows in fig 15. 7) The rate of percolation of 40-30mm/day is decreased to 30-20/day. It is found that the decreasad rate of percolation due to vinyl-cutoff in footpath. 8) The growing condition was fine, and there was no found that decease and lageing as always submerged plot. 9) It is found that it must be constructed irrigation and drainage system, inlet and outlet perpect, respectly, of which could be irrigation water saved and would be inereased the irrigation water temperature.

  • PDF

Studies on the Effects of Various Methods of Rotation Irrigation System Affecting on the Growth. Yield of Rice Plants and Its Optimum Facilities. (수환관개방법과 적정시설연구 (수환관개의 방법의 차이가 수축생육 및 수량에 미치는 영향과 그 적정시설에 관한 연구))

  • 이창구
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.11 no.1
    • /
    • pp.1534-1548
    • /
    • 1969
  • This experiment was conducted, making use of the 'NONG-RIM6' arecommended variety of rice for the year of 1968. Main purposes of the experiment are to explore possibilities of; a) ways and means of saving irringation water and, b) overcoming drought at the same time so that an increased yield in rice could be resulted in. Specifically, it was tried to determine the effects of the Rotation irrigation method combined with differentiated thickness of lining upon the growth and yield of rice. Some of the major findings are summarized in the following. 1) The different thicknesses show a significant relationship with the weight of 1,000 grains. In the case of 9cm lined plot, the grain weight is 23.5grams, the heaviest. Next in order is 3cm lined plot, 6cm lined plot, control plot, and wheat straw lined-plot. 2) In rice yield, it is found that there is a considerably moderate significant relationship with both the different thickness of lining and the number of irrigation, as shown in the table. 3) There is little or no difference among different plots in terms of a) physical and chemical properties of soil, b) quality of irrigation water, c) climatic conditions, and rainfalls. 4) It is found that there is a significant relationship between differences in the method of rotation irrigation and the number of ears per hill. The plot irrigated at an interval of 7 days shows 17.4 ears and plot irrigated at an interval of 6 days, 16.3 5) In vinyl-treated plots, it is shown that both yield and component elements are greatest in the case of the plot ith whole of $3cm/m^2$ Next in order are the plot with a hole of $2cm/m^2$ the plot with a hole of $1cm/m^2$ In the case of the plot with no hole it is found that both yield and component elements are decreased as compared to the control plot. 6) The irrigation water reqirement is measured for the actual irrigation days of 72 which are the number subtracted the days of rainfall of 30 from the total irrigation days of 102. It is found that the irrigation water requirement for the uncontrol plot is 1,590mm as compared to 876mm(44.9% saved) for the 9cm-lined plot, 959mm(39.7% saved) for the 6cm-lined plot 1,010mm(36% saved) for the 3cm-lined plot and 1,082mm(32% saved) for the wheat straw lined plot. In the case of the Rotation irrigation method it is found that the water requirement for the plot irrigated at an interval of 8 days is 538mm(65% saved), as compared to 617mm(61.6% saved) for plot irrigated at an interval of 7 day 672mm(57.7% saved) for plot irrigated at an interval of 6day, 746mm(53.0% saved) for the plot irrigated at an interval of 5 days, 890mm 44.0% saved) for the plot irrigated at an interval of 4 days, and 975mm(38.6% saved) for the plot irrigated at an interval of 3 days. 7) The rate of evapotranspiration is found 2.8 around the end of month of July, as compared to 2.6 at the begining of August 3.4 around the end of August and 2.6 at the begining of August 3.4 around the end of August and 2.6 at the begining of September. 8) It is found that the saturation quantity of 30mm per day is decreased to 20mm per day though the use of vinyl covering. 9) The husking rate shows 75 per cent which is considered better.

  • PDF