• Title/Summary/Keyword: Soil nitrogen

Search Result 2,409, Processing Time 0.033 seconds

Application of the Life Cycle Assessment Methodology to Rice Cultivation in Relation to Fertilization (시비방법별 벼 재배에 따른 전과정평가 방법을 적용한 환경영향 평가)

  • Shin, Joung-Du;Lim, Dong-Kyu;Kim, Gun-Yeob;Park, Mun-Hee;Koh, Mun-Hwan;Eom, Ki-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.22 no.1
    • /
    • pp.41-46
    • /
    • 2003
  • The suitability of the life Cycle Assessment (LCA) methodology to analyze the environmental impact of rice cultivation with different fertilizing systems is investigated. The arst part of an LCA is an inventory of parameters used and emissions released due to the system under investigation. In the following step, the Life Cycle Impact Assessment the inventory data were analyzed and aggregated in order to finally get one index representing the total environmental burden. For the life Cycle Impact Assessment (LCIA) the Eco-indicator 95 method has been chosen because this is well documented and regularly applied impact assessment method. The resulting index is called Eco-indicator value. The higher the Eco-indicator value the stronger is the total environmental impact of an analyzed fertilizing system. The rice field experiment conducted in middle parts of korea was chosen as an example for the life cycle impact analysis. In this experiment the treatments were consisted of none fertilizer plot (NF), standard fertilizer plot (SF) applied chemical fertilizers based on soil chemical analysis before rice transplanting, and efflux fertilized plot (EF) applied with pig wastes fermented as the same rates of SF plot as basis on total nitrogen content. The obtained Eco-indicator values were clearly different among the treatments in the rice trial. The total Eco-indicator values for SF and EF have been observed 58 and 38% relative to the NF, respectively. For all the treatments the environmental effects of eutrophication contributed most to the total Eco-indicator value. The results appeared that the LCA methodology is basically suitable to assess the environmental impact associated with different fertilizer applications for rice cultivation. A comparative analysis of the fertilizing system's contribution to global warming and eutrophication is possible.

Decomposition and Nutrient Dynamics of Leaf Litter of Camellia japonica L. in Korea (동백나무(Camellia japonica L.) 낙엽의 분해와 영양원소의 동태)

  • Cha, Sangsub;Lee, Kyung-Eui;Lee, Sang-Hoon;Choi, Moonjong;Shim, Jae Kuk
    • Korean Journal of Environment and Ecology
    • /
    • v.30 no.1
    • /
    • pp.110-117
    • /
    • 2016
  • Litter fall is a source of nutrients and carbon transfer in terrestrial ecosystems. Litter decomposition provides nutrients needed for plant growth, sustains soil fertility, and supplies $CO_2$ to the atmosphere. We collected the leaf litter of evergreen broadleaf tree, Camellia japonica L., and carried out a decomposition experiment using the litterbag method in Ju-do, Wando-gun, Korea for 731 days from Dec 25, 2011 to Dec 25, 2013. The leaf litter of C. japonica remained 42.6% of the initial litter mass after experiment. The decay constant (k) of C. japonica leaf litter was $0.427yr^{-1}$. The carbon content of C. japonica leaf litter was 44.6%, and the remaining carbon content during the decomposition tended to coincide with the changes in litter mass. The initial nitrogen and phosphorus content was 0.47% and 324.7 mg/g, respectively. The remaining N in decaying litter increased 1.66-fold in the early decomposition stage, then gradually decreased to 1.18-fold after 731 days. The content of P showed the highest value (1.64-fold of initial content) after 456 days, which then fell to a 1.15-fold after 731 days. The remaining Ca, K, Mg and Na content in C. japonica leaf litter tended to decrease during decomposition. The remaining K showed a remaining mass of 8.9% as a result of rapid reduction. The initial C/N and C/P ratio of C. japonica leaf litter was 94.87 and 1368.5, respectively. However, it tended to decrease as decomposition progressed because of the immobilization of N and P (2.78 and 2.68-fold of initial content, respectively) during the leaf litter decaying. The study results showed that N and P was immobilized and other nutrients was mineralized in C. japonica leaf litter during experimental period.

Studies on the Types and Rates of Application of Cattle Slurry and Swine Manure Fermented with Sawdust on Productivity of Silage Corn and Leaching of Nutrients (우분액비 및 톱밥발효돈분 시용이 사일리지용 옥수수 생산성 및 양분용탈에 미치는 영향)

  • Na, Hoon-Chan;Jung, Min-Woong;Choi, Yeun-Sik;Choi, Ki-Choon;Yook, Wan-Bang
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.26 no.4
    • /
    • pp.177-186
    • /
    • 2006
  • This study was conducted to investigate the effects of the types and rates of application of animal manure on productivity of silage corn and environmental pollution in silage corn cultivation soil. The experiment was confirmed in lysimeter which was constructed with 0.30m diameter, and 1 m depth. This study was arranged in split plot design. Main plots were the types of cattle slurry (CS), swine manure fermented with sawdust (SMFS) and chemical fertilizer (CF), Subplots were the application rates of animal manure, as urea, such as 100, 200 and 400 kg N $ha^{-1}$. Dry matter(DM) and nitrogen yields of silage corn enhanced as increased application rates of CS, SMFS and CF (p<0.05). DM yield reveals that there is an decrease in order of CF>CS>SMFS (p<0.05). Crude protein (CP) contents of the whole silage corn increased as increased application rates of CS, SMFS and CF. IN addition, $NO_{3^-}N$ content in leaching water by application of animal manure reveals that there is an decrease in order SMFS>CF>CS (p<0.05). However, $NH_{4^-}N$ content was hardly influenced by application of animal manure, and $NH_{4^-}N$ content increased with application rates increased. $PO_{4^-}P$ content in leaching water by application of animal manure reveals that there is an decrease in order of SMFS>CF>CS. $PO_{4^-}P$ increased as increasing application rates (p<0.05), whereas $PO_{4^-}P$ in leaching water maintained a low levels.

Studies on the Use of Radioisotope Tracer Techniques to Investigate and Improve the Root Activities in Rice Plant(I) - Effect of Water Control in Soil of the Paddy Field Lacking in the Special Mineral Nutritions - (방사성(放射性) 동위체도입(同位體導入)과 그 추적기술(追跡技術)에 의(依)한 수도근계(水稻根系) 활성상(活性相)의 해명(解明)과 개선(改善)에 관(關)한 연구(硏究) - 특수성분(特殊成分) 결핍(缺乏) 답토양(沓土壤)에서의 용수조절(用水調節) 효과(效果)에 대(對)하여-(제1보)(第1報) -)

  • Ahn, Hak-Soo;Chung, Hee-Don;Kim, Kyu-Won;Shim, Sang-Chil
    • Applied Biological Chemistry
    • /
    • v.15 no.1
    • /
    • pp.77-84
    • /
    • 1972
  • A field experiment was conducted to determine the factors responsible in limiting nutrient up take and root activity in low productive paddy fold. Radiosotope of phosphorus-32 was used as a tracer. Results of the study were as follows: 1. On yield components responsible for increase yield indicated that number of ears per panicle and ripening ratio were closely related to increase yield. 2. Root volume or root feeding area has significant influence in increasing rice yield. 3. Root volume indicative of root activity and nutrient uptake can be effected by reasonable water control. 4. The combined application of calcium, silica, and magnesium(as a fused magnesium phosphate. the Kyun-gi Chemical Co. products.) with water control, although under conditions of large amount application of nitrogen, was found to be increased the maturing rate. 5. In the plots of water control, the number of roots per one volume were less than that of the continuous flooding plots, but the weight per root was heavier than the flooding plot ones. 6. Improvement of the present native culture method could effectively increase paddy rice yield.

  • PDF

Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment (중질소와 순수규산 시비수준이 벼의 양분흡수 및 생리적 특성에 미치는 영향)

  • Cho Young-Son;Jeon Won-Tae;Park Chang-Young;Park Ki-Do;Kang Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.408-419
    • /
    • 2006
  • A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.

Application Level of Anaerobic Digestion Waste Water from Methane Fermentation of Pig Manure on Rice (벼에 대한 돈분뇨 혐기성 소화액비의 시용기준 연구)

  • Lim, Dong-Kyu;Park, Woo-Kyun;Kwon, Soon-Ik;Nam, Jae-Jak;Park, Baeg-Kyun;Kim, Seung-Hwan
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.255-260
    • /
    • 2002
  • This study was conducted to evaluate the effect of the proper application level of anaerobic digestion waste water on rice. The waste water was from methane fermentation of pig manure to use as a liquid manure. The mixture treatment of 70% liquid manure and 30% chemical fertilizer (LM 70%+CF 30%) and 100% liquid manure (LM 100%) treatment were higher number of tiller than other treatments at the both tillering and heading stages of rice. The yields of LM 70%+CF 30% and LM 100% treatments were a little higher than that of NPK treatment, but the mixture treatment of 50% liquid manure and 50% chemical fertilizer (LM 50%+CF 50%) was a little lower yield than NPK treatment. The periodic changes of the $NH_4-N$ and $NO_3-N$ contents of the NPK and the LM 50%+CF 50% treatments in paddy soil were a little higher than those of other treatments at the early stage of rice. The $NH_4-N$ contents of NPK and the LM 50%+CF 50% treatments in irrigation water quality were higher than those of other treatments, however there was no difference in $NO_3-N$ content among the treatments. The $NH_4-N$ and $NO_3-N$ contents of non fertilizer treatment in infiltration water quality were leached a little higher than those of other treatments. It may be due to poor growth of rice following to reduce the nutrient uptake by rice and to increase relatively the nutrient leaching to the ground water. The proper application level of anaerobic digestion waste water as a liquid manure could be suggested to apply LM 70%+CF 30%. All treatments were the same amount of nitrogen content for the standard application amount on rice.

Effect of Application Level of Swine Slurry on Agronomic Characteristics and Yield of Corn and $NO_3-N$ Content of Corn Field (돈분액비 시용수준이 사료용 옥수수의 생육특성과 수량 및 토양 중 $NO_3-N$ 함량에 미치는 영향)

  • Lim, Young Chul;Yoon, S. H.;Kim, J. G.;Choi, G. J.;Kim, W. H.;Seo, S.;Lee, S. J.;Yook, W. B.
    • Journal of Animal Environmental Science
    • /
    • v.11 no.2
    • /
    • pp.117-124
    • /
    • 2005
  • Livestock manure has been utilized as fertilizer, and trying to make resources natural circulation of organic material. This experiment was conducted to investigate the effect of application level of swine slurry on agronomic characteristics and yield of silage corn and $NO_3-N$ content of soil for three years in the experimental field of Grassland and Forage Crops Division, National Livestock Research Institute. Summary of the results were as follows. The experiment was conducted according to a randomized complete block design. Six treatments were non fertilizer(NF), chemical fertilizer(CF), $100\%$ swine slurry(SS100), $150\%$ swine slurry(SS150), $200\%$ swine slurry(SS200) and mixture fertilizer(MF, $100\%$ swine slurry + $50\%$ chemical fertilizer) with three replications. The application level of swine slurry(SS) $100\%$ was highest in Brix as $8.6^{\circ}$ and stay green was as swine slurry application increased. Deficiency of plant, plant height, ear height and lodging were increased in above $100\%$ swine slurry application level. Dry matter yield was decreased in SS 100 but increased in SS 150 and SS 200. Significant effect was observed for all treatments. The content of $NO_3-N$ in infiltration water was high in above swine slurry nitrogen $150\%$ but that content in run off water was very small. Conclusively, application to swine slurry below $150\%$ would be recommended to produce higher yield and to conserve environment in corn field.

  • PDF

Effects of Applying Cattle Slurry and Mixed Sowing with Legumes on Productivity, Feed Values and Organic Stock Carrying Capacity of Whole Crop Barley and Rye (액상우분뇨 시용과 콩과작물의 혼파가 청보리와 호밀의 생산성, 사료가치 및 단위면적당 유기가축 사육능력에 미치는 영향)

  • Jo, Ik-Hwan;HwangBo, Soon;Lee, Sung-Hoon
    • Korean Journal of Organic Agriculture
    • /
    • v.18 no.3
    • /
    • pp.419-432
    • /
    • 2010
  • This study was conducted to determine effects of applying cattle slurry and mixed sowing with legumes such as hairy vetch or forage pea on productivity, feed values and organic stock carrying capacity of whole crop barley and rye as winter forage crops, and to obtain organic forages together with higher soil fertility. Experimental plots consisted of 7 treatments, which were non-fertilizer, chemical fertilizer (containing phosphate and potassium: P+K), chemical fertilizer (containing nitrogen, phosphate and potassium: N+P+K), organic fertilizer, cattle slurry, cattle slurry application (mixture with hairy vetch), and cattle slurry application (mixture with forage pea) plots. Each treatment was triplicates, and seven treatments were allocated in a completely randomized block design. For whole crop barley or its mixture crops, annual dry matter (DM), crude protein (CP), and total digestible nutrients (TDN) yields of N+P+K plots were significantly (P<0.05) higher than other plots except for cattle slurry plots. The CP content of barley or its mixture crops was significantly higher tor N+P+K plot (9.8%) and mixture plots with legumes (8.6~9.7%) than those of other treatments. As 450 kg Hanwoo heifers were fed diets included 70% whole crop barley or 70% mixture crops with legumes, mixture plots are capable of raising average 1.7 to 1.8 heads/ha a year. For rye or its mixture crops, annual DM, CP, and TDN yields represented 6.9~7.1, 0.5~0.6 and 4.3~4.4 ton/ha, respectively. The N+P+K plot contained 10.8% CP, which was higher (P<0.05) than all other treatments. In case of 450 kg Hanwoo heifers fed diets included 70% rye or 70% mixture crops with legumes, mixture plots can rear average 1.9 heads/ha a year. When it was considered based on crop yields and organic stock carrying capacity, applying cattle slurry to whole crop barley or rye had the comparable yields and feed values to chemical fertilizer application. Moreover, whole crop barley and rye within cattle slurry plots had a greater combination with hairy vetch and forage pea, respectively, and their mixture crops with legumes had higher crude protein and TDN yields within cattle slurry plots. In conclusion, it would be expected that mixed sowing with legumes in the application of cattle slurry to grass crops could be substituted for imported organic grains as dietary protein sources in feeding organic livestock.

Residual characteristic of tebuconazole and fludioxonil in Allium victorialis (Allium ochotense Prokh.) (소면적 재배작물 산마늘(Allium ochotense Prokh.) 중 살균제 Tebuconazole 및 Fludioxonil의 잔류특성)

  • Woo, Min-Ji;Hur, Kyung-Jin;Kim, Ji-Yoon;Saravanan, Manoharan;Kim, Se-Weon;Hur, Jang-Hyeon
    • The Korean Journal of Pesticide Science
    • /
    • v.19 no.4
    • /
    • pp.354-360
    • /
    • 2015
  • In recent years, Allium victorialis has been extensively used as a pharmacological agent for various diseases in the form of anti-arteriosclerotic, anti-diabetic and anti-cancer. Allium victorialis is severely affected by various fungal diseases since it naturally grow in the shady and humid environments in Korea. In this case, different types of fungicides are applied to control the fungal diseases in Allium victorialis. The present study was aimed to determine the residual characteristics of two fungicides namely tebuconazole and fludioxonil on Allium victorialis. For this study, the fungicides were drenched soil on Allium victorialis in the cultivation area Pyeongchang by the standard (two thousand fold) and double (thousand fold) dilutions. At the end of $15^{th}$, $30^{th}$ and $40^{th}$ days samples were collected for residue analysis. Residues of tebuconazole and fludioxonil were analyzed using GC/NPD (Gas Chromatography/Nitrogen Phosphorus Detector) and their recovery were found to be 108.8~119.5% and 91.3~104.8%, respectively. The method of limits of quantification for both fungicides was $0.01mg\;kg^{-1}$. Further, the results of this study shows that the residue levels of both fungicides on Allium victorialis were <$0.01{\sim}0.12mg\;kg^{-1}$ and $0.01{\sim}0.09mg\;kg^{-1}$ and their % ADI (% Acceptable Daily Intake) were 17.44% and 25.75%, respectively. Based on the results obtained in this study, we suggest that the residue levels of both of the fungicides on Allium victorialis are safe and these fungicides can also be used to control fungal diseases in Allium victorialis.

Effects of Applying Cattle Manure on Carrying Capacity of Organic Livestock per Unit Area of Summer Forage Crops (우분뇨 시용이 하계사료작물의 단위면적당 유기가축 사육능력에 미치는 영향)

  • Jo, Ik-Hwan
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.2
    • /
    • pp.185-198
    • /
    • 2011
  • This study was carried out to select a proper forage crop, and to estimate the proper level of application of cattle manure and carrying capacity of organic livestock per unit area. Corns and forage sorghum hybrids were cultivated with different types of livestock manures and different amount of them to produce organic forage. For both corns and forage sorghum hybrids, no fertilizer plots had significantly (p<0.05) lower annual dry matter (DM), crude protein (CP) and total digestible nutrients (TDN) yields than those of other plots, whereas the N-P-K (nitrogen-phosphorous-kalium) plots ranked the highest yields, followed by 150% cattle manure plots and 100% cattle manure plots. DM, CP and TDN yields of in cattle manure plots were significantly (p<0.05) higher than those of no fertilizer and P-K (phosphorous-kalium) plots. The yields of in cattle slurry plots tended to be a little higher than those of in composted cattle manure plots. Assuming that corn and forage sorghum hybrids produced from this trial were fed at 70% level to 450kg of Hanwoo heifer for 400g of average daily gain, the carrying capacity (head/year/ha) of livestock ranked the highest in 150% cattle slurry plots (mean 6.0 heads), followed by 100% cattle slurry plots (mean 5.3 heads), 150% composted cattle manure plots (mean 4.7 heads), 100% composted cattle manure plots (mean 4.4 heads), and no fertilizer plots (mean 2.8 heads) in corns (or the cultivation of corns). Meanwhile, in the case of forage sorghum hybrids, 150% cattle slurry plots (mean 6.4 heads) ranked the highest carrying capacity, followed by 150% composted cattle manure plots (mean 4.8 heads), 100% cattle slurry plots (mean 4.4 heads), 100% composted cattle manure plots (mean 4.1 heads), and no fertilizer plots (mean 2.8 heads). The results indicated that the application of livestock manure to cultivated soil could enhance not only DM and TDN yields, but also the carrying capacity of organic livestock as compared with the effect of chemical fertilizers. In conclusion, the production of organic forage with reutilized livestock manure will facilitate the reduction of environmental pollution and the production of environmentally friendly agricultural products by resource circulating system.