• Title/Summary/Keyword: Soil moisture model

Search Result 431, Processing Time 0.026 seconds

Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions

  • Zhang, Yaning;Cheng, Zhanbo;Lv, Huayong
    • Geomechanics and Engineering
    • /
    • v.18 no.1
    • /
    • pp.97-109
    • /
    • 2019
  • Physical conditions play vital role on the mechanical properties of frozen soil, especially for the temperature and moisture content of frozen soil. Subsequently, they influence the subsidence and stress law of permafrost layer. Taking Jiangcang No. 1 Coal Mine as engineering background, combined with laboratory experiment, field measurements and empirical formula to obtain the mechanical parameters of frozen soil, the thick plate mechanical model of permafrost was established to evaluate the safety of permafrost roof. At the same time, $FLAC^{3D}$ was used to study the influence of temperature and moisture content on the deformation and stress law of frozen soil layer. The results show that the failure tensile stress of frozen soil is larger than the maximum tensile stress of permafrost roof occurring in the process of mining. It indicates that the permafrost roof cannot collapse under the conditions of moisture content in the range from 20% to 27% as well as temperature in the range from $-35^{\circ}C$ to $-15^{\circ}C$. Moreover, the maximum subsidence of the upper and lower boundary of the overlying permafrost layer decreases with the increase of moisture content in the range of 15% to 27% or the decrease of temperature in the range of $-35^{\circ}C$ to $-15^{\circ}C$ if the temperature or moisture content keeps consistent with $-25^{\circ}C$ or 20%, respectively.

Possibility of Climate Change and Simulation of Soil Moisture Content on Mt. Hallasan National Park, Chejudo Island, Korea

  • Kim, Eun-Shik;Kim, Young-Sun
    • The Korean Journal of Ecology
    • /
    • v.23 no.2
    • /
    • pp.117-123
    • /
    • 2000
  • Changing patterns and the possibility of climate change in the area of Cheiudo island, the southernmost Island in Korea, were analyzed using daily temperature and Precipitation data observed at the Cheiu Regional Meteorological Office from May 1923 to December 1998. A hydrologic simulation model "BROOK" was used to simulate and analyze the dynamics of daily soil moisture content and soil moisture deficit by applying the daily weather data. During the period, significantly increasing pattern was observed in temperature data of both annual and monthly basis, while no significantly changing pattern was observed in precipitation data. During the last 76 years. mean annual temperature was observed to have risen about 1.4$^{\circ}C$, which may show the Possibility of the initiation of climate change on the island whose validity should be tested in future studies after long-term studies on temperature. Based on the simulation, due to increased temperature, significant increase was predicted in evapotranspiration. while no significant decrease was detected in simulated soil moisture content during the period. Changing pattern of annual soil moisture content was markedly different from those of precipitation. In some dominant trees, negative effects of the drought of the late season for the previous year were shown to be statistically significant to radial growth of the tree for the current year. As annual variation of radial growth of trees is mainly affected by the soil moisture content. the information on the dynamics of soil moisture deficit possibly provides us with useful information for the interpretation of tree growth decline on the mountain. mountain.

  • PDF

Establishment and Operation of a Soil Moisture Monitoring System Considering Temporal and Spatial Features of Representation (시공간 대표성을 고려한 토양수분 모니터링 System의 구축 및 운영)

  • Kim, Ki-Hoon;Kim, Sang-Hyun;Kim, Hyung-Sub;Kim, Won
    • Journal of Korea Water Resources Association
    • /
    • v.38 no.1
    • /
    • pp.73-82
    • /
    • 2005
  • A soil moisture measuring method of a hillslope for Korean watershed is developed to configure spatial-temporal distribution of soil moisture. Intensive surveying of topography had been performed to make a digital elevation model(DEM). Flow distribution algorithms were applied and a distribution pattern of the measurement sensors was determined to maximize representative features of spatial variation of soil moisture. Inverse surveying provides appropriate information to install the waveguides in the field. Measurements were performed at the right side hillslope of Bumrunsa located at the Sulmachun watershed. A multiplex monitoring system has been established and spatial-temporal variation of soil moisture data has been measured for a rainfall-runoff event. Acquired soil moisture data show that physical hydrologic interpretations as well as the effectiveness of monitoring system. Lack of connectivity in vertical distribution of soil moisture suggests that preferential flow and macropore flux are important components in the hillslope hydrology.

Evaluation of Evapotranspiration and Soil Moisture of SWAT Simulation for Mixed Forest in the Seolmacheon Catchment (설마천유역 혼효림에서 실측된 증발산과 토양수분을 이용한 SWAT모형의 적용성 평가)

  • Joh, Hyung-Kyung;Lee, Ji-Wan;Shin, Hyung-Jin;Park, Geun-Ae;Kim, Seong-Joon
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.12 no.4
    • /
    • pp.289-297
    • /
    • 2010
  • Common practice of Soil Water Assessment Tool (SWAT) model validation is to use a single variable (i.e., streamlfow) to calibrate SWAT model due to the paucity of actual hydrological measurement data in Korea. This approach, however, often causes errors in the simulated results because of numerous sources of uncertainty and complexity of SWAT model. We employed multi-variables (i.e., streamflow, evapotranspiration, and soil moisture), which were measured at mixed forest in Seolmacheon catchment ($8.54\;km^2$), in order to assess the performance and reduce the uncertainties of SWAT model output. Meteorological and surface topographical data of the catchment were obtained as basic input variables and SWAT model was calibrated using daily data of streamflow (Jan. - Dec.), evapotranspiration (Sep. - Dec.), and soil moisture (Jun. - Dec.) collected in 2007. The model performance was assessed by comparing its results with the observation (i.e., streamflow of 2003 to 2008 and evapotranspiration and soil moisture of 2008). When the multi-variable measurements were used to calibrate the SWAT model, the model results showed better agreement with the measurements compared to those using a single variable measurement by showing increases in coefficient of determination ($R^2$) from 0.72 to 0.76 for streamflow, from 0.49 to 0.59 for soil moisture, and from 0.52 to 0.59 for evapotranspiration. The findings highlight the importance of reliable and accurate collective observation data for improving performance of SWAT model and promote its facilitation for estimating more realistic hydrological cycles at catchment scale.

Modeling the effects of excess water on soybean growth in converted paddy field in Japan 1. Predicting groundwater level and soil moisture condition - The case of Biwa lake reclamation area

  • Kato, Chihiro;Nakano, Satoshi;Endo, Akira;Sasaki, Choichi;Shiraiwa, Tatsuhiko
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.315-315
    • /
    • 2017
  • In Japan, more than 80 % of soybean growing area is converted fields and excess water is one of the major problems in soybean production. For example, recent study (Yoshifuji et al., 2016) suggested that in the fields of shallow groundwater level (GWL) (< 1m depth), rising GWL even in a short period (e.g. 1 day) causes inhibition of soybean growth. Thus it becomes more and more important to predict GWL and soil moisture in detail. In addition to conventional surface drainage and underdrain, FOEAS (Farm Oriented Enhancing Aquatic System), which is expected to control GWL in fields adequately, has been developed recently. In this study we attempted to predict GWL and soil moisture condition at the converted field with FOEAS in Biwa lake reclamation area, Shiga prefecture, near the center of the main island of Japan. Two dimensional HYDRUS model (Simuinek et al., 1999) based on common Richards' equation, was used for the calculation of soil water movement. The calculation domain was considered to be 10 and 5 meter in horizontal and vertical direction, respectively, with two layers, i.e. 20cm-thick of plowed layer and underlying subsoil layer. The center of main underdrain (10 cm in diameter) was assumed to be 5 meter from the both ends of the domain and 10-60cm depth from the surface in accordance with the field experiment. The hydraulic parameters of the soil was estimated with the digital soil map in "Soil information web viewer" and Agricultural soil-profile physical properties database, Japan (SolphyJ) (Kato and Nishimura, 2016). Hourly rainfall depth and daily potential evapo-transpiration rate data were given as the upper boundary condition (B.C.). For the bottom B.C., constant upward flux, which meant the inflow flux to the field from outside, was given. Seepage face condition was employed for the surrounding of the underdrain. Initial condition was employed as GWL=60cm. Then we compared the simulated and observed results of volumetric water content at depth of 15cm and GWL. While the model described the variation of GWL well, it tended to overestimate the soil moisture through the growing period. Judging from the field condition, and observed data of soil moisture and GWL, consideration of soil structure (e.g. cracks and clods) in determination of soil hydraulic parameters at the plowed layer may improve the simulation results of soil moisture.

  • PDF

Assessment of Stand-alone Utilization of Sentinel-1 SAR for High Resolution Soil Moisture Retrieval Using Machine Learning (기계학습 기반 고해상도 토양수분 복원을 위한 Sentinel-1 SAR의 자립형 활용성 평가)

  • Jeong, Jaehwan;Cho, Seongkeun;Jeon, Hyunho;Lee, Seulchan;Choi, Minha
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.571-585
    • /
    • 2022
  • As the threat of natural disasters such as droughts, floods, forest fires, and landslides increases due to climate change, social demand for high-resolution soil moisture retrieval, such as Synthetic Aperture Radar (SAR), is also increasing. However, the domestic environment has a high proportion of mountainous topography, making it challenging to retrieve soil moisture from SAR data. This study evaluated the usability of Sentinel-1 SAR, which is applied with the Artificial Neural Network (ANN) technique, to retrieve soil moisture. It was confirmed that the backscattering coefficient obtained from Sentinel-1 significantly correlated with soil moisture behavior, and the possibility of stand-alone use to correct vegetation effects without using auxiliary data observed from other satellites or observatories. However, there was a large difference in the characteristics of each site and topographic group. In particular, when the model learned on the mountain and at flat land cross-applied, the soil moisture could not be properly simulated. In addition, when the number of learning points was increased to solve this problem, the soil moisture retrieval model was smoothed. As a result, the overall correlation coefficient of all sites improved, but errors at individual sites gradually increased. Therefore, systematic research must be conducted in order to widely apply high-resolution SAR soil moisture data. It is expected that it can be effectively used in various fields if the scope of learning sites and application targets are specifically limited.

Development of a Conjunctive Surface-Subsurface Flow Model for Use in Land Surface Models at a Large Scale: Part I. Model Description (대규모 육지수문모형에서 사용 가능한 지표면 및 지표하 연계 물흐름 모형의 개발: I. 모형설명)

  • Choi, Hyun-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.59-63
    • /
    • 2008
  • The surface runoff is one of the important components for the surface water balance. However, most Land Surface Models(LSMs), coupled to climate models at a large scale for the prediction and prevention of disasters caused by climate changes, simplistically estimate surface runoff from the soil water budget. Ignoring the role of surface flow depth on the infiltration rate causes errors in both surface and subsurface flow calculations. Therefore, for the comprehensive terrestrial water and energy cycle predictions in LSMs, a conjunctive surface-subsurface flow model at a large scale is developed by coupling a 1-D diffusion wave model for surface flow with the 3-D Volume Averaged Soil-moisture Transport(VAST) model for subsurface flow. This paper describes the new conjunctive surface-subsurface flow formulation developed for improvement of the prediction of surface runoff and spatial distribution of soil water by topography, along with basic schemes related to the terrestrial hydrologic system in Common Land Model(CLM), one of the state-of-the-art LSMs.

Use of uniform distribution for generating synthetic brightness temperature in passive microwave soil moisture retrieval

  • Lee Khil-Ha
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2005.05b
    • /
    • pp.19-28
    • /
    • 2005
  • Passive microwave remote sensing technique have shown great potential for mon monitoring regional/global surface soil moisture. Given a single measurement at dual polarization/single frequency/single view angle, a strategic approach to artificially generating multiple microwave brightness temperatures is presented. And then the statistically generated microwave brightness temperature data are applied to the inverse algorithm, which mainly relies on a physically based microwave emission model and an advanced single-criterion multi-parameter optimization technique, to simultaneously retrieve soil moisture and vegetation characteristics. . The procedure is tested with dual polarized Tropical Rainfall Measurement Mission Microwave Imager (TRMM/TMI) over two different cover sites in Oklahoma and Beltsville field experimental data. The retrieval results are analyzed and show excellent performance.

  • PDF

Analysis of radon depth profile in soil air after a rainfall by using diffusion model

  • Maeng, Seongjin;Han, Seung Yeon;Lee, Sang Hoon
    • Nuclear Engineering and Technology
    • /
    • v.51 no.8
    • /
    • pp.2013-2017
    • /
    • 2019
  • The radon concentrations in soil air were measured before and after a rainfall. 226Ra concentration, porosity, moisture content and temperature in soil were measured at Kyungpook National University in Daegu. As the results of measurement and analysis, the arithmetic mean of measured 222Rn concentration increased from 12100 ± 500 Bq/㎥ to 16200 ± 600 Bq/㎥ after the rainfall. And the measured 226Ra concentration was 61.4 ± 5.7 Bq/kg and the measured porosity was 0.5 in soil. The estimated values of 226Ra concentration and porosity using diffusion model of 222Rn in soil were 60.3 Bq/kg and 0.509, respectively. The estimated values were similar to the measured values. 222Rn concentration in soil increased with depth and moisture content. The estimations were obtained through fitting based on the diffusion model of 222Rn using the measurement values. The measured depth profiles of 222Rn were similar to the calculated depth profiles of 222Rn in soil. We hope that the results of this study will be useful for environmental radiation analysis.

Soil moisture estimation using the water cloud model and Sentinel-1 & -2 satellite image-based vegetation indices (Sentinel-1 & -2 위성영상 기반 식생지수와 Water Cloud Model을 활용한 토양수분 산정)

  • Chung, Jeehun;Lee, Yonggwan;Kim, Jinuk;Jang, Wonjin;Kim, Seongjoon
    • Journal of Korea Water Resources Association
    • /
    • v.56 no.3
    • /
    • pp.211-224
    • /
    • 2023
  • In this study, a soil moisture estimation was performed using the Water Cloud Model (WCM), a backscatter model that considers vegetation based on SAR (Synthetic Aperture Radar). Sentinel-1 SAR and Sentinel-2 MSI (Multi-Spectral Instrument) images of a 40 × 50 km2 area including the Yongdam Dam watershed of the Geum River were collected for this study. As vegetation descriptor of WCM, Sentinel-1 based vegetation index RVI (Radar Vegetation Index), depolarization ratio (DR), and Sentinel-2 based NDVI (Normalized Difference Vegetation Index) were used, respectively. Forward modeling of WCM was performed by 3 groups, which were divided by the characteristics between backscattering coefficient and soil moisture. The clearer the linear relationship between soil moisture and the backscattering coefficient, the higher the simulation performance. To estimate the soil moisture, the simulated backscattering coefficient was inverted. The simulation performance was proportional to the forward modeling result. The WCM simulation error showed an increasing pattern from about -12dB based on the observed backscattering coefficient.