Browse > Article
http://dx.doi.org/10.12989/gae.2019.18.1.097

Study on failure and subsidence law of frozen soil layer in coal mine influenced by physical conditions  

Zhang, Yaning (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing))
Cheng, Zhanbo (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing))
Lv, Huayong (School of Energy and Mining Engineering, China University of Mining and Technology (Beijing))
Publication Information
Geomechanics and Engineering / v.18, no.1, 2019 , pp. 97-109 More about this Journal
Abstract
Physical conditions play vital role on the mechanical properties of frozen soil, especially for the temperature and moisture content of frozen soil. Subsequently, they influence the subsidence and stress law of permafrost layer. Taking Jiangcang No. 1 Coal Mine as engineering background, combined with laboratory experiment, field measurements and empirical formula to obtain the mechanical parameters of frozen soil, the thick plate mechanical model of permafrost was established to evaluate the safety of permafrost roof. At the same time, $FLAC^{3D}$ was used to study the influence of temperature and moisture content on the deformation and stress law of frozen soil layer. The results show that the failure tensile stress of frozen soil is larger than the maximum tensile stress of permafrost roof occurring in the process of mining. It indicates that the permafrost roof cannot collapse under the conditions of moisture content in the range from 20% to 27% as well as temperature in the range from $-35^{\circ}C$ to $-15^{\circ}C$. Moreover, the maximum subsidence of the upper and lower boundary of the overlying permafrost layer decreases with the increase of moisture content in the range of 15% to 27% or the decrease of temperature in the range of $-35^{\circ}C$ to $-15^{\circ}C$ if the temperature or moisture content keeps consistent with $-25^{\circ}C$ or 20%, respectively.
Keywords
frozen soil; physical conditions; failure law; subsidence and stress laws;
Citations & Related Records
Times Cited By KSCI : 5  (Citation Analysis)
연도 인용수 순위
1 He, G.L. (2009), "Determination of critical thickness of stiff roof in coal mine based on thick plate theory", Chin. J. Undergr. Sp. Eng., 5(4), 659-664 (in Chinese).   DOI
2 Hejmanowski, R. and Malinowska, A. (2009), "Evaluation of reliability of subsidence prediction based on spatial statistical analysis", Int. J. Rock Mech. Min., 46(2), 432-438. https://doi.org/10.1016/j.ijrmms.2008.07.012.   DOI
3 Li, G.D., Zhang, H.S. and Li, H.H. (2013), "The comparative analysis of probability integration and numerical simulation in surface subsidence prediction", Appl. Mech. Mater., 295-298, 3015-3018. https://doi.org/10.4028/www.scientific.net/AMM.295-298.3015.   DOI
4 Li, H., Zhu, Y., Zhang, J. and Lin, C. (2004), "Effects of temperature, strain rate and dry density on compressive strength of saturated frozen clay", Cold Reg. Sci. Technol., 39(1), 39-45.   DOI
5 Li, P.X., Tan, Z.X., Yan, L.L. and Deng, K.Z. (2011), "Time series prediction of mining subsidence based on a SVM", Int. J. Rock Mech. Min. Sci., 21(4), 557-562. https://doi.org/10.1016/j.mstc.2011.02.025.
6 Liu, F., Guo, Z.R., Lv, H.Y., and Cheng, Z.B. (2018), "Test and analysis of blast wave in mortar test block", Int. J. Rock Mech. Min. Sci., 108, 80-85. https://doi.org/10.1016/j.ijrmms.2018.06.003.   DOI
7 Liu, X.J. and Cheng, Z.B. (2019), "Changes in subsidence-field surface movement in shallow-seam coal mining", J. S. Afr. I. Min. Metall., 119(2), 201-206. http://dx.doi.org/10.17159/2411-9717/2019/v119n2a12.
8 Lv, H.Y., Tang, Y.S., Zhang, L.F., Cheng, Z.B. and Zhang, Y.N. (2019), "Analysis for mechanical characteristics and failure models of coal specimens with non-penetrating single crack", Geomech. Eng., 17(4), 355-365. https://doi.org/10.12989/gae.2019.17.4.355.   DOI
9 Nie, L., Wang, H., Xu, Y. and Li, Z. (2015), "A new prediction model for mining subsidence deformation: the arc tangent function model", Nat. Hazards, 75(3), 2185-2198. https://doi.org/10.1007/s11069-014-1421-z.   DOI
10 Qin, S., Wang, S., Long, H., Liu, J., Qin, S. and Wang, S. (1999), "A new approach to estimating geo-stresses from laboratory Kaiser effect measurements", Int. J. Rock Mech. Min., 36(8), 1073-1077. https://doi.org/10.1016/S1365-1609(99)00068-4.   DOI
11 Shang, T.L., Suo, Y.L. and Liu, Y.W. (2017), "Research on ascending mining in multiple coal seams under permafrost", Coal Technol., 36(7), 20-22 (in Chinese).
12 Suo, Y.L. and Fan, Q.Q. (2014), "Study on rational exploiting elevation limit of coal mine with permafrost layer", Coal Technol., 33(5), 149-151 (in Chinese).   DOI
13 Sun, W.B., Du, H.Q., Zhou, F., and Shao, J.L., (2019), "Experimental study of crack propagation of rock-like specimens containing conjugate fractures", Geomech. Eng., 17(4), 323-331. https://doi.org/10.12989/gae.2019.17.4.323.   DOI
14 Xu, G., Wu, W., Kong, L. and Qi, J. (2018), "Hypoplastic modeling for the mechanical behavior of frozen soil in stress path testing", Int. J. Geomech., 18(6), 04018049. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001117.   DOI
15 Wu, X., Zhao, L., Liu, G., Xu, H., Zhang, X. and Ding, Y. (2018), "Effects of permafrost thaw-subsidence on soil bacterial communities in the southern Qinghai-Tibetan Plateau", Appl. Soil Ecol., 128, 81-88. https://doi.org/10.1016/j.apsoil.2018.04.007.   DOI
16 Xu, H., Liu, B. and Fang, Z. (2014), "New grey prediction model and its application in forecasting land subsidence in coal mine", Nat. Hazards, 71(2), 1181-1194. https://doi.org/10.1007/s11069-013-0656-4.   DOI
17 Xu, N., Kulatilake, P.H.S.W., Tian, H., Wu, X., Nan, Y. and Wei, T. (2013), "Surface subsidence prediction for the WUTONG mine using a 3-D finite difference method", Comput. Geotech., 48(3), 134-145. https://doi.org/10.1016/j.compgeo.2012.09.014.   DOI
18 Yang, S.L., Wang, Z.H., Kong, D.Z., Cheng, Z.B. and Song, G.F., (2016), "Overlying strata failure process and support resistance determination in large mining height face", Chin. J. Rock Mech. Eng., 33(2), 199-207. (in Chinese)
19 Yang, X., Wen, G., Dai, L., Sun, H. and Li, X. (2019), "Ground subsidence and surface cracks evolution from shallow-buried close-distance multi-seam mining: a case study in Bulianta Coal Mine", Rock Mech. Rock Eng., 1-18. https://doi.org/10.1007/s00603-018-1726-4.
20 Tu, Y.L., Zhong, Z.L., Luo, W.K., Liu, X.R. and Wang, S. (2016), "A modified shear strength reduction finite element method for soil slope under wetting-drying cycles", Geomech. Eng., 11(6), 739-756. https://doi.org/10.12989/gae.2016.11.6.739.   DOI
21 Viso, J.R.D., Carmona, J.R. and Ruiz, G. (2008), "Shape and size effects on the compressive strength of high-strength concrete", Cement Concrete Res., 38(3), 386-395. https://doi.org/10.1016/j.cemconres.2007.09.020Get.   DOI
22 Wang, M., Meng, S., Yuan, X., Sun, Y., and Zhou, J. (2018), "Experimental validation of vibration-excited subsidence model of seasonally frozen soil under cyclic loads", Cold Reg. Sci. Technol., 146, 175-181. https://doi.org/10.1016/j.coldregions.2017.11.001.   DOI
23 Wang, T., Zhou, G., Wang, J. and Yin, L. (2017), "Stochastic thermal-mechanical characteristics of frozen soil foundation for a transmission line tower in permafrost regions", Int. J. Geomech., 18(3), 06017025. https://doi.org/10.1061/(ASCE)GM.1943-5622.0001087.   DOI
24 Wang, Z.H. and Cheng, Z.B. (2016), "Hard roof fracturing form and dynamic disaster control in short island mining face", Chin. J. Rock Mech. Eng., 35(S2), 4018-4028 (in Chinese).
25 Zhou, Z., Yang, H., Xing, K., and Gao, W. (2018b), "Prediction models of the shear modulus of normal or frozen soil-rock mixtures", Geomech. Eng., 15(2), 783-791. https://doi.org/10.12989/gae.2018.15.2.783.   DOI
26 Yao, Y., Chen, J., Li, T., Fu, B., Wang, H., Li, Y. and Jia, H. (2019), "Soil liquefaction in seasonally frozen ground during the 2016 Mw6.6 Akto earthquake", Soil Dyn. Earthq. Eng., 117, 138-148. https://doi.org/10.1016/j.soildyn.2018.08.024.   DOI
27 Yoshimoto, N., Wu, Y., Hyodo, M. and Nakata, Y. (2016), "Effect of relative density on the shear behavior of granulated coal ash", Geomech. Eng., 10(2), 207-224. https://doi.org/10.12989/gae.2016.10.2.207.   DOI
28 Alvarez-Fernandez, M.I., Gonzalez-Nicieza, C., Menendez-Diaz, A. and Alvarez-Vigil, A.E. (2005), "Generalization of the n-k influence function to predict mining subsidence", Eng. Geol., 80(1-2), 1-36. https://doi.org/10.1016/j.enggeo.2005.02.004.   DOI
29 Zhao, G. and Zhou, S. (2015), "Determining safe thickness of roof in subsea mining based on thick plate theory", Chin. J. Geological Hazard Control, 26(4), 60-66.
30 Zhou, D., Wu, K., Miao, X. and Li, L. (2018a), "Combined prediction model for mining subsidence in coal mining areas covered with thick alluvial soil layer", B Eng. Geol. Environ., 77(1), 283-304. https://doi.org/10.1007/s10064-016-0961-8.   DOI
31 Azadegan, O., Li, J. and Jafari, S.H. (2014), "Estimation of shear strength parameters of lime-cement stabilized granular soils from unconfined compressive tests", Geomech. Eng., 7(3), 247-261. https://doi.org/10.12989/gae.2014.7.3.247   DOI
32 Ambrozic, T. and Turk, G. (2003), "Prediction of subsidence due to underground mining by artificial neural networks", Comput. Geosci., 29(5), 627-637. https://doi.org/10.1016/S0098-3004(03)00044-X.   DOI
33 Andersland, O.B. and Akili, W. (2015), "Stress effect on creep rates of a frozen clay soil", Geotechnique, 17(1), 27-39. https://doi.org/10.1680/geot.1967.17.1.27.   DOI
34 Antonova, S., Sudhaus, H., Strozzi, T., Zwieback, S., Kaab, A., Heim, B., and Boike, J. (2018), "Thaw subsidence of a yedoma landscape in northern Siberia, measured in situ and estimated from TerraSAR-X interferometry", Remote Sens., 10(4), 494. https://doi.org/10.3390/rs10040494.   DOI
35 Azmatch, T.F., Sego, D.C., Arenson, L.U. and Biggar, K.W. (2011), "Tensile strength and stress-strain behaviour of Devon silt under frozen fringe conditions", Cold Reg. Sci. Technol., 68(1-2), 85-90. https://doi.org/10.1016/j.coldregions.2011.05.002   DOI
36 Azmatch, T.F., Sego, D.C., Arenson, L.U. and Biggar, K.W. (2012), "Using soil freezing characteristic curve to estimate the hydraulic conductivity function of partially frozen soils", Cold Reg. Sci. Technol., 83-84, 103-109. https://doi.org/10.1016/j.coldregions.2012.07.002.   DOI
37 Chang, I., Im, J., Prasidhi, A.K. and Cho, G.C. (2015), "Effects of Xanthan gum biopolymer on soil strengthening", Constr. Build. Mater., 74, 65-72. https://doi.org/10.1016/j.conbuildmat.2014.10.026.   DOI
38 Cheng, Z.B., Zhang, Y.N., Li, L.H. and Lv, H.Y. (2018), "Theoretical solution and analysis of the elastic modulus and foundation coefficient of coal-rock combination material", Int. J. Mater. Sci Res., 1(1), 23-31.   DOI
39 Chen, J., Du, C., Jiang, D., Fan, J. and He, Y. (2016), "The mechanical properties of rock salt under cyclic loading- unloading experiments", Geomech. Eng., 10(3), 325-334. https://doi.org/10.12989/gae.2016.10.3.325.   DOI
40 Cheng, X.S. (1989), Applied Theory of Plates and Shells, Shandong Science & Technology Press, Ji'nan, China (in Chinese).
41 Christ, M. and Kim, Y. (2009), "Experimental study on the physical-mechanical properties of frozen silt", KSCE J. Civ. Eng., 13(9), 317-324. https://doi.org/10.1007/s12205-009-0317-z.   DOI
42 Dai, H.D., Yin, M.L., He, T.Y., Liu, k., Li, T. and Zheng, T.Q. (2014), "Research on the mechanical and thermophysical properties of frozen Soil in cretaceous formation", Appl. Mech. Mater., 580-583, 962-965. https://doi.org/10.4028/www.scientific.net/AMM.580-583.962.   DOI
43 Evans, S.G., Ge, S., Voss, C.I., and Molotch, N.P. (2018), "The role of frozen soil in groundwater discharge predictions for warming alpine watersheds", Water Resour. Res., 54(3), 1599-1615. https://doi.org/10.1002/2017WR022098.   DOI
44 Fu, Q., Wang, E., Li, T., and Hou, R. (2018), "Impact factors and dynamic simulation of tillage-layer temperature in frozen-thawed soil under different cover conditions", Int. J. Agr. Biol. Eng., 11(2), 101-107.   DOI
45 Hatheway, H.W. (2009), "The complete ISRM suggested methods for rock characterization, testing and monitoring, 1974-2006", Environ. Eng. Geosci., 15(1), 47-48. https://doi.org/10.2113/gseegeosci.15.1.47.   DOI