• Title/Summary/Keyword: Soil model

Search Result 4,490, Processing Time 0.038 seconds

Shaking table test on soil-structure interaction system (2) : Superstructure with foundation on layered soil (건물-지반 시스템에 관한 진동대실험 (2) : 성층지반위의 구조물)

  • Lee Sung-Kyung;Masato Motosaka;Min Kyung-Won
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2005.04a
    • /
    • pp.529-537
    • /
    • 2005
  • This paper proposes the shaking table testing method, without any soil specimen only using building model as an experimental part, considering dynamic soil-structure interaction based on the substructure method. The two-layered soil is assumed as a soil model of the entire soil-structure interaction syhstem(SSI) in this paper. Differently from the constant soil stiffness, the frequency-dependent dynamic soil stiffness is approximated for the case of both acceleration and velocity feedback, respectively. The interaction force is observed from measuring the accelerations at superstructure. Using the soil filters corresponding to the approximated dynamic soil stiffness, the shaking table drives the acceleration or velocity, which the needed motion to give the building specimen the SSI effects. Experimental results show the applicability the proposed methodologies to the shaking table test considering dynamic soil-structure interaction.

  • PDF

Calculation model for the shear strength of unsaturated soil under nonlinear strength theory

  • Deng, Dongping;Wen, Shasha;Lu, Kuan;Li, Liang
    • Geomechanics and Engineering
    • /
    • v.21 no.3
    • /
    • pp.247-258
    • /
    • 2020
  • The shear strength of unsaturated soils, a research hotspot in geotechnical engineering, has great guiding significance for geotechnical engineering design. Although kinds of calculation models for the shear strength of unsaturated soil have been put forward by predecessors, there is still need for new models to extensively consider the nonlinear variation of shear strength, particularly for the nonlinear effect of the net normal stress on the shear strength of unsaturated soil. Here, the shear strength of unsaturated soils is explored to study the nonlinear effects of net normal stress with the introduction of a general nonlinear Mohr-Coulomb (M-C) strength criterion, and the relationship between the matric suction (or suction stress) and degree of saturation (DOS) constructed by the soil-water characteristics curve (SWCC) of van Genuchten is also applied for unsaturated soil. Then, two calculation models (i.e., an envelope shell model and an effective stress model) are established for the shear strength of unsaturated soils under the nonlinear strength theory. In these two models, the curve of the shear strength of unsaturated soils versus the net normal stress exhibits a tendency to gently. Moreover, the proposed formulas have flexibility and convenience with five parameters (for the effective stress model) or six parameters (for the envelope shell model), which are from the M-C strength parameters of the saturated soil and fitting parameters of SWCC of van Genuchten. Thereafter, by comparison with the classical theory of the shear strength of unsaturated soils from some actual cases, the rationality and accuracy of the present models were verified.

Adsorption Characteristics and Kinetic Models of Ammonium Nitrogen using Biochar from Rice Hull in Sandy Loam Soil

  • Choi, Yong-Su;Kim, Sung-Chul;Shin, Joung-Du
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.5
    • /
    • pp.413-420
    • /
    • 2015
  • Objective of this study was to investigate adsorption characteristics and kinetic models of $NH_4-N$ to biochar produced from rice hull in respective to mitigation of greenhouse gases. $NH_4-N$ concentration was analyzed by UV Spectrophotometer. For the experiment, the soil texture used in this study was sandy loam soil, and application rates of chemical fertilizer and pig compost were $420-200-370kgha^{-1}$ (N-P-K) and $5,500kgha^{-1}$ as recommended amount after soil test for corn cultivation. Biochar treatments were 0.2-5% to soil weight. Its adsorption characteristic was investigated with application of Langmuir isotherm, and pseudo-first order kinetic model and pseudo-second order kinetic model were used as kinetic models. Adsorption amount and removal rates of $NH_4-N$ were $39.3mg^{-1}$ and 28.0% in 0.2% biochar treatment, respectively. The sorption of $NH_4-N$ to biochar was fitted well by Langmiur model because it was observed that dimensionless constant ($R_L$) was 0.48. The maximum adsorption amount ($q_m$) and binding strength constant (b) were calculated as $4.1mgg^{-1}$ and $0.01Lmg^{-1}$ in Langmuir isotherm, respectively. The pseudo-second order kinetic model was more appropriate than pseudo-first order kinetic model for high correlation coefficient ($r^2$) of pseudo-second order kinetic model. Therefore, biochar produced from rice hull could reduce $N_2O$ by adsorbing $NH_4-N$ to biochar cooperated in sandy loam soil.

A Study on Grain Yield Response and Limitations of CERES-Barley Model According to Soil Types

  • Sang, Wan-Gyu;Kim, Jun-Hwan;Shin, Pyeong;Cho, Hyeoun-Suk;Seo, Myung-Chul;Lee, Geon-Hwi
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.50 no.6
    • /
    • pp.509-519
    • /
    • 2017
  • Crop simulation models are valuable tools for estimating crop yield, environmental factors and management practices. The objective of this study was to evaluate the effect of soil types on barley productivity using CERES (Crop Environment REsource Synthesis)-barley, cropping system model. So the behavior of the model under various soil types and climatic conditions was evaluated. The results of the sensitivity analysis in temperature, $CO_2$, and precipitation showed that soil types had a direct impact on the simulated yield of CERES-barley model. We found that barley yield in clay soils would be more sensitive to precipitation and $CO_2$ in comparison with temperature. And the model showed limited accuracy in simulating water and nitrogen stress index for soil types. In general, the barley grown on clay soils were less sensitive to water stress than those grown on sandy soils. Especially it was found that the CERES model underestimated the effect of water stress in high precipitation which led to overprediction of crop yield in clay soils. In order to solve these problems and successfully forecast grain yield, further studies on the modification of the water stress response of crops should be considered prior to use of the CERES-barley model for yield forecasting.

Performance Prediction of Powered-Rigid Wheel by Model Tests (사토(砂土)에 있어서 모델 테스트에 의한 차륜(車輪)의 성능(性能) 예측(豫測)에 관한 연구(硏究))

  • Lee, K.S.;Lee, Y.K.;Park, S.J.
    • Journal of Biosystems Engineering
    • /
    • v.13 no.4
    • /
    • pp.1-8
    • /
    • 1988
  • A series of soil bin experiments was carried out on land to evaluate the soil physical properties whether they are pertinent to soil-wheel system and to investigate if true model theory u applicable to powered rigid wheel-soil system. Four different sized wheels having diameter of 45, 60, 75 and 90 em were wed for the experiment. The following conclusion was derived from the study. (1) True model theory can be sufficiently utilized to study the wheel traction and linkage on lands. (2) For both dry and wet sands, Cone Index(CI) and soil shear parameters (c, ${\phi}$) with bulk density (${\gamma}$) were found to be good measures of soil physical properties which are pertinent to predict the performance of the powered rigid wheel-soil system.

  • PDF

Soil moisture prediction using a support vector regression

  • Lee, Danhyang;Kim, Gwangseob;Lee, Kyeong Eun
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.2
    • /
    • pp.401-408
    • /
    • 2013
  • Soil moisture is a very important variable in various area of hydrological processes. We predict the soil moisture using a support vector regression. The model is trained and tested using the soil moisture data observed in five sites in the Yongdam dam basin. With respect to soil moisture data of of four sites-Jucheon, Bugui, Sangieon and Ahncheon which are used to train the model, the correlation coefficient between the esimtates and the observed values is about 0.976. As the result of the application to Cheoncheon2 for validating the model, the correlation coefficient between the estimates and the observed values of soil moisture is about 0.835. We compare those results with those of artificial neural network models.

Simulation of Soil Hydrological Components in Chuncheon over 30 years Using E-DiGOR Model

  • Aydin, Mehmet;Jung, Yeong-Sang;Yang, Jae-E.;Lee, Hyun-Il;Kim, Kyung-Dae
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.484-491
    • /
    • 2012
  • The hydrological components of a sandy loam soil of nearly level in Chuncheon over 30 years were computed using the E-DiGOR model. Daily simulations were carried out for each year during the period of 1980 to 2009 using standard climate data. Reference evapotranspiration and potential soil evaporation based on Penman-Montheith model were higher during May to August because of the higher atmospheric evaporative demand. Actual soil evaporation was mainly found to be a function of the amount and timing of rainfall, and presumably soil wetness in addition to atmospheric demand. Drainage was affected by rainfall and increased with a higher amount of precipitation and soil water content. Excess drainage occurred throughout rainy months (from July to September), with a peak in July. Therefore, leaching may be a serious problem in the soils all through these months. The 30-year average annual reference evapotranspiration and potential soil evaporation were 951.5 mm and 714.2 mm, respectively. The actual evaporation from bare soil varied between 396.9-528.4 mm and showed comparatively lesser inter-annual variations than drainage. Annual drainage rates below 120 cm soil depth ranged from 477.8 to 1565.9 mm. The long-term mean annual drainage-loss was approximately two times higher than actual soil evaporation.

A Study on the Estimation of Zoysia matrella's Evaporation Using Makkink Model (인공지반에서 금잔디의 증발산량 예측에 관한 연구 -퍼라이트 배합토에서 Makkink의 일사법을 이용하여-)

  • 김도경;황지환
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.29 no.1
    • /
    • pp.161-167
    • /
    • 2001
  • The purpose of this study is to find out the difference of Zoysia matrella's evaporation in between 100 percent soil and mixed soil with 50 percent of perlite to create green spaces on the artificial ground. It is believed that the weight against the artificial ground will be reduced, provided the vegetation is possible in the circumstance of the mixed sol with 50 percent of perlite. The study employed a modified Makkink's model by Iwasa who had developed the model for estimating Zoysia matrella's evaporation in the natural ground using the Makkink's formula in 1997 at Chiba University, Japan. The parameter of Makkink's formula is the solar radiation. For that reason, the Makkink's formula is simple and easy to measure the parameter and has a high utility. If the outcomes from mixed soil are close to modified Makkinks formula, the modified Makkink's formula will be applied to estimate in the artificial ground with mixed soil with 50 percent of perlite. Weather observation and actual amount of evaporation of Zoysia matrella have been measured, and the relation between weather condition and actual amount of evaporation had been also investigated. In line with this, we found out that there is a relevant relationship between daily average temperature, the modified Makkink's model by Iwasa, and the actual amount of evaporation. As the results of the experiment, the outcomes from mixed soil with 50 percent of perlite have very high relation to 100 percent soil. In addition, mixed soil has more adhesion with water than natural soil. However, it needs to be adequately maintained in terms of fertilization and damage from disease and harmful insects until the gras fastens its roots into the soil. By using mixed soil with 50 percent of perlite, the load from soil on the artificial ground can be reduced. The study on the growth of the grass throughout the plant vegetation and the actual amount of evaporation in the mixed soil with 50 percent of perlite should be performed in the future.

  • PDF

Estimation of DAWAST Model Parameters by the Soil Physical characteristics (토양의 물리적 특성을 고려한 DAWAST 모형의 매개변수결정)

  • 박승기;문종필;김태철;안병기;김병규
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 1998.10a
    • /
    • pp.8-13
    • /
    • 1998
  • DAWAST model considering the meteorologic and geographic characteristics of the Korean watersheds was newly developed to simulate the daily streamflow. From the condition of soil water storage just before the storm event from DAWAST model, realtime flood can be forecasted by FLOCON model. The purpose of study is that Umax and FC of DAWAST model parameter is obtained by the soil physical characteristics.

  • PDF

Estimation of the Heat Budget Parameter in the Atmospheric Boundary Layer considering the Characteristics of Soil Surface (지표면의 특성을 고려한 대기경계층내의 열수지 parameter 추정 -열수지 parameter를 이용한 중규모 순환의 수치예측-)

  • 이화운;정유근
    • Journal of Environmental Science International
    • /
    • v.5 no.6
    • /
    • pp.727-738
    • /
    • 1996
  • An one dimensional atmosphere-canopy-soil interaction model is developed to estimate of the heat budget parameter in the atmospheric boundary layer. The canopy model is composed of the three balance equations of energy, temperature, moisture at ground surface and canopy layer with three independent variables of Tf(foliage temperature), Tg(ground temperature), and qg(ground specific humidity). The model was verilied by comparative study with OSUID(Oregon State University One Dimensional Model) proved in HAPEX-MOBILHY experiment. Also we applied this model in two dimensional land-sea breeze circulation. According to the results of this study, surface characteristics considering canopy acted importantly upon the simulation of meso-scale circulation. The factors which used in the numerical experiment are as follows ; the change for a sort of soil(sand and peat), the change for shielding factor, and the change for a kind of vegetation.

  • PDF