• Title/Summary/Keyword: Soil mixture ratio

Search Result 267, Processing Time 0.03 seconds

Predicting strength development of RMSM using ultrasonic pulse velocity and artificial neural network

  • Sheen, Nain Y.;Huang, Jeng L.;Le, Hien D.
    • Computers and Concrete
    • /
    • v.12 no.6
    • /
    • pp.785-802
    • /
    • 2013
  • Ready-mixed soil material, known as a kind of controlled low-strength material, is a new way of soil cement combination. It can be used as backfill materials. In this paper, artificial neural network and nonlinear regression approach were applied to predict the compressive strength of ready-mixed soil material containing Portland cement, slag, sand, and soil in mixture. The data used for analyzing were obtained from our testing program. In the experiment, we carried out a mix design with three proportions of sand to soil (e.g., 6:4, 5:5, and 4:6). In addition, blast furnace slag partially replaced cement to improve workability, whereas the water-to-binder ratio was fixed. Testing was conducted on samples to estimate its engineering properties as per ASTM such as flowability, strength, and pulse velocity. Based on testing data, the empirical pulse velocity-strength correlation was established by regression method. Next, three topologies of neural network were developed to predict the strength, namely ANN-I, ANN-II, and ANN-III. The first two models are back-propagation feed-forward networks, and the other one is radial basis neural network. The results show that the compressive strength of ready-mixed soil material can be well-predicted from neural networks. Among all currently proposed neural network models, the ANN-I gives the best prediction because it is closest to the actual strength. Moreover, considering combination of pulse velocity and other factors, viz. curing time, and material contents in mixture, the proposed neural networks offer better evaluation than interpolated from pulse velocity only.

A Study on the Engineering Characteristics of the plaster-soil uiiitures (석고플라스터 혼합토의 공학적 특성)

  • 도덕현;정성모
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.27 no.4
    • /
    • pp.53-60
    • /
    • 1985
  • The plaster mixed to loam and sandy soil from 4 to 12 percent by dry soil weight, and the compaction, permeability, CBR, unconfined compressive strength and freezingthawing test were performed The results obtained are summarized as follows; 1.The coefficient of permeability reduced sharply at the plaster content of 4 percent, and in the CBR test, the swelling ratio reduced by the increment of plaster content. 2.The addition of plaster increased the unconfined compressive strength by the cementing effect, and it was found that the optimum plaster content, existed with the soil type, which showed the maximum strength 3.It was possible to enhance the unconfined compressive strength of the gypsum-lime-soil mixtures when the optimum content of plaster was mixed to the hydrated lime. 4.In case of sandy soil, the relative frost heave decreased with the mixture of plaster, however in loam soil, the relative frost heave began to increase at the plaster content of 12 percent than non-treated soil. Therefore the optimum plaster content existed for protecting frost heave by the different soil type. 5.The above summarized results make it possible to expect the effects such as improvement of soil properties, decrement of permeability, increment of unconfined compressive strength, and protection of frost heave, etc, therefore, it is considered that it is possible to it is plaster as sub-base materials of road.

  • PDF

Assessment of swelling pressure of stabilized Bentonite

  • Angin, Zekai;Ikizler, Sabriye Banu
    • Geomechanics and Engineering
    • /
    • v.15 no.6
    • /
    • pp.1219-1225
    • /
    • 2018
  • In this study, a comprehensive laboratory experimental programme was conducted on expansive soil with a high swelling potential to study the influence of different additive materials on swelling pressure and index properties. Lime, sand, multifilament fiber and fibrillated fiber were used for stabilization of expansive soil. Lime, sand and fibers were respectively added to the expansive soil at 0-7%, 0-80%, 0-0.5%. On each mixture that was prepared by the proportions mentioned above, Atterberg limits, compaction, and swelling pressure tests were conducted. From the result of these experiments, the swelling pressure-time relation could be replaced by a rectangular hyperbola established to facilitate the prediction of ultimate percent swelling with a few initial data points. The best type of additive and its optimum ratio for engineering purposes could be estimated rapidly by this approach.

The Evaluation on In-Situ Adaptability of Mono-layer Landfill Final Cover System (단층형 매립지 최종복토시스템의 현장 적용성 평가)

  • Yu, Chan;Yun, Sung-Wook
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.48 no.5
    • /
    • pp.73-80
    • /
    • 2006
  • The mono-layer cover system is composed of soils only as a filling material and various plants are planted on the surface to control the water balance in the cover system. In this paper, the mono-layer cover system was considered as an alternative landfill final cover system and developed a model that could utilize industrial by-product (especially, coal ash & phosphogypsum) as additive filling materials. The mixture of granite soil, coal ash, and phosphogypsum was placed as a cover material in a box constructed with cement. Laboratory tests were carried out to investigate the environmental effect on the utilization of coal ash & phosphogypsum and to determine the mxing ratio of each materials. In the leaching test, all materials showed lower heavy metal concentration than the threshold values of regulation. The optimum mixing ratio of materials which was applied to field model test was determined to soil (4) : coal ash (1) : phosphogypsum (1) on the volume base. Field model tests were continued from February to July, 2004 in the soil box that was constructed with cement block. It was verified that coal ash and phospogypsum mixed with soil was to be safe environmentally and the water balance of mono-layer cover system was reasonable.

An Experimental Study on Steering Performance of Tracked Vehicle on Deep-sea Cohesive Soft Soil by DOE using Orthogonal Arrays (직교배열표 실험계획법에 의한 심해저 점착성 연약지반용 무한궤도차량의 선회성능에 대한 실험 연구)

  • Choi, Jong-Su;Hong, Sup;Kim, Hyung-Woo
    • Journal of Ocean Engineering and Technology
    • /
    • v.20 no.4 s.71
    • /
    • pp.37-42
    • /
    • 2006
  • This paper is concerned with experimental investigation of steering performance of a tracked vehicle on extremely soft soil. A tracked vehicle model with principal dimensions of 0.9 m(L)x0.75 m(B)x0.4 m(H) and weight of 167 kg was constructed with a pair of driving chain links, driven by two AC-servo motors. The tracks were configured with detachable grousers with variable span. A deep seabed was simulated by means of a bentonite-water mixture in a soil bin of 6.0 m(L)x3.7 m(B)x0.7 m(H). The turning radii of vehicle and driving torques of motors were measured with respect to experiment variables: steering ratio, driving speed, grouser chevron angle, grouser span, and grouser height. L8 orthogonal table is adopted for DOE (Design of experiment). The effects of experiment variables on steering performance are evaluated.

A Study on Propagation and Growth Characteristics of Tamarix chinensis for Development of Plant Using in Coast Environmental Forests (해안 환경림 조성용 식물개발을 위한 위성류의 증식과 생장특성에 관한 연구)

  • Park Chong-Min;Kim Yong-Kil
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.34 no.3 s.116
    • /
    • pp.79-90
    • /
    • 2006
  • Tamarix chinenis blooms twice a you and its flowers, branches and leaves make the adjustment of tree shape. Propagation methods and growth characteristics of T. chinensis were studied in order to ascertain its potential use as one of vegetation resources for coast forestation and landscaping. The study results indicated that 1 or 2 you old hard wood cuttings showed higher rooting ratio than greenwood or semi hard wood cuttings. One to one mixture between vermiculite and pearlite appeared to be the best for bed soil, and sea sand and silt(loess) mixture was the next. Sea sand and granitic soil followed after. In terms of seasonal differences, spring cuttings showed the best rooting ratio, root number, and root length. Fall cuttings followed after spring cutting, and summer cuttings showed worst results regarding rooting ratio, root number, and root length. The best rooting promotion effects of growth regulators were observed with sea sand bed soils. There was no significant difference among growth regulators in terms of rooting and shoot growth. Low concentration below 100 ppm of growth regulators was enough for rooting promotion effect. In general, the number and mean length of roots and shoots were showed the excellent records in the sites with high rooting ratio. The study result strongly showed that T. chinensis can be considered as a suitable tree for coast forestation and landscaping because of its easy cutting propagation and rapid growth on saline lands.

Characterization of Flowable Fill with Ferro-Nickel Slag Dust (페로니켈 슬래그 미분말을 이용한 유동성 뒤채움재 특성)

  • Lee, Kwan-Ho
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.5
    • /
    • pp.16-21
    • /
    • 2017
  • The aim of this study was to utilize ferronickel slag produced in the manufacture of stainless steel as a flowable backfill material for underground use using crushed fine powder. Experimental combinations were made using two components: Case A (sand) and Case B (soil). The optimal mixing ratio of Case A was sand (58.4%), ferronickel slag fine powder (21.6%), cement (1.8%), and water (18.2%). In the case of B, the optimal mixing ratio was determined to be soil (53.0%), ferronickel slag fine powder (20.0%), cement (1.7%), and water (25.3%). The uniaxial compressive strength of case A, which is a mixture of ordinary sand and ferronickel slag powder, was relatively larger than that of case B using soil. In addition, the strength of the specimen increased with increasing curing time. The uniaxial compressive strength tended to increase with increasing curing time. In addition, the unconfined compression strength of the fluid backfill material using common sand as the main material was relatively larger than that of the mixed material using soil as the main material. In case A, the uniaxial compressive strength ranged from 0.17-0.33 MPa, 0.21-0.39 MPa, and 0.19-0.40 MPa, respectively, at curing times of 7, 14, and 28 days. From the experimental results, it was concluded that the ratio of FNS powder and cement mixture was the most appropriate for Case A3. Case B, which used soil as the main material, showed a similar tendency to Case A. As a result of the dissolution test for evaluating the environmental harm of the FNS fine powder, there was no dissolution of substances harmful to the environment.

The Engineering Characteristics of the Sludge Mixed Soil (슬러지 혼합토의 공학적 특성)

  • Kim, JungUn;Kim, MyeongKyun;Bae, WooSeok
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.43-50
    • /
    • 2011
  • As a result of population growth and economic growth, household and industrial wastes continue to rapidly increase every year. Especially, sewage sludge produced at final stage is increasing with the constant construction and putting in good order of the sewage plant. In addition to the government's prohibition for filling up the sludge, it became more and more difficult to discharge wastes to the sea as London Dumping Convention '96 came into effect. And sewage sludge and the livestock wastes are expected to be thoroughly prohibited from discharging to the sea from 2012. So we need desperately economical and useful alternatives to compact and reuse these wastes. The purpose of this study is to evaluate the utilization of solidified sludge-soil mixture as an enhancement and covering material. To determine the proper mixed ratio of solidified sludge, this study conducted basic physical properties tests, compaction tests, uniaxial compression tests, and permeability test. It was found that the higher the ratio of solidified sludge, the lower the coefficient of permeability. Upon the results of particle size distribution, the mixed ratio of solidified sludge that meet the enhancement material condition was 59% or lower for SP granite soil and 48% or lower for SM granite soil respectively.

Analysis of Strength Characteristic for Bottom Ash Mixtures as Mixing Ratio and Curing Methods (Bottom Ash와 혼합재료의 혼합비 및 양생방법에 따른 강도특성 분석)

  • Choi, Woo-Seok;Son, Young-Hwan;Park, Jae-Sung;Noh, Soo-Kack;Bong, Tae-Ho
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.3
    • /
    • pp.129-140
    • /
    • 2013
  • Bottom Ash is industrial by-product from a thermoelectric power plant. An immense quantities of bottom ash have increased each year, but most of them is reclaimed in ash landfill. In this study, in order to raise recycling rate of Bottom Ash, it is suggested to cure Bottom Ash (BA) mixtures mixed with cement, lime, Fly Ash (FA), and oyster shell (OS). Mixtures of 5~20 % mixing ratio had been cured for 1, 3, 7, 14, and 28 days using sealed curing and air-dry curing method. Unconfined compressive strength test was conducted to determine strength and deformation modulus ($E_{50}$) change for mixtures as mixing ratio and curing day, water contents of mixtures were measured after test. As a result, strength and $E_{50}$ were increased as mixing ratio and curing days, but values and tendencies of them appeared in different as kind of mixture, mixing ratio, curing method, and curing days. The results showed the addition of cement, lime, Fly Ash, and oyster soil in Bottom Ash could improved strength and $E_{50}$ and enlarge its field of being used.

Phase Changes of Soil-Cement Mixture Using Fall Cone and Heat of Hydration (Fall cone과 수화열을 이용한 흙-시멘트 혼합물의 상 변화 연구)

  • Kim Jae-Hyung;Won Jeong-Yun;Kim Sung-Pil;Chang Pyoung-Wuck
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.25-32
    • /
    • 2004
  • Some amount of cements can be added into the soil with high water content to improve the engineering properties. In such a case, it is difficult to predict and figure out the phase changes of the soil-cement mixture which is closely associated with workability of the soil-cement mixture. Changes in heat of hydration and hardness of the cement pastes are known to provide the useful information about the phase changes of the soil-cement mixtures. In this study, heat of hydration and cone penetration depth were measured from the specimens of cement paste and 3 soil-cement mixtures. From the experimental results, it was found that the phase changes of the soil-cement mixtures are the same as those of cement paste, and that shear strength of the mixtures abruptly increases when the heat of hydration is minimum. Initial setting time of the mixtures coincides with the state when fall cone penetration depth was 1.0 mm and it is defined as plastic limit of the mixtures. Initial setting time of the mixtures is retarded as soil/cement ratio is increased. Measurements of heat of hydration and fall cone apparatus could be the useful tools to predict the phase changes of tile soil-cement mixtures.