• 제목/요약/키워드: Soil microbiology

검색결과 1,367건 처리시간 0.027초

Diversity of Culturable Soil Micro-fungi along Altitudinal Gradients of Eastern Himalayas

  • Devi, Lamabam Sophiya;Khaund, Polashree;Nongkhlaw, Fenella M.W.;Joshi, S.R.
    • Mycobiology
    • /
    • 제40권3호
    • /
    • pp.151-158
    • /
    • 2012
  • Very few studies have addressed the phylogenetic diversity of fungi from Northeast India under the Eastern Himalayan range. In the present study, an attempt has been made to study the phylogenetic diversity of culturable soil fungi along the altitudinal gradients of eastern Himalayas. Soil samples from 24 m above sea level to 2,000 m above sea level altitudes of North-East India were collected to investigate soil micro-fungal community structure and diversity. Molecular characterization of the isolates was done by PCR amplification of 18S rDNA using universal primers. Phylogenetic analysis using BLAST revealed variation in the distribution and richness of different fungal biodiversity over a wide range of altitudes. A total of 107 isolates were characterized belonging to the phyla Ascomycota and Zygomycota, corresponding to seven orders (Eurotiales, Hypocreales, Calosphaeriales, Capnodiales, Pleosporales, Mucorales, and Mortierellales) and Incertae sedis. The characterized isolates were analysed for richness, evenness and diversity indices. Fungal diversity had significant correlation with soil physico-chemical parameters and the altitude. Eurotiales and Hypocreales were most diverse and abundant group of fungi along the entire altitudinal stretch. Species of Penicillium (D=1.44) and Aspergillus (D=1.288) were found to have highest diversity index followed by Talaromyces (D=1.26) and Fusarium (D=1.26). Fungal distribution showed negative correlation with altitude and soil moisture content. Soil temperature, pH, humidity and ambient temperature showed positive correlation with fungal distribution.

Effects of American Ginseng Cultivation on Bacterial Community Structure and Responses of Soil Nutrients in Different Ecological Niches

  • Chang, Fan;Jia, Fengan;Lv, Rui;Guan, Min;Jia, Qingan;Sun, Yan;Li, Zhi
    • Journal of Microbiology and Biotechnology
    • /
    • 제32권4호
    • /
    • pp.419-429
    • /
    • 2022
  • American ginseng (Panax quinquefolium L.) is a perennial herbaceous plant widely cultivated in China, Korea, the United States, and Japan due to its multifunctional properties. In northwest China, transplanting after 2-3 years has become the main mode of artificial cultivation of American ginseng. However, the effects of the cultivation process on the chemical properties of the soil and bacterial community remain poorly understood. Hence, in the present study, high-throughput sequencing and soil chemical analyses were applied to investigate the differences between bacterial communities and nutrition driver factors in the soil during the cultivation of American ginseng. The responses of soil nutrition in different ecological niches were also determined with the results indicating that the cultivation of American ginseng significantly increased the soluble nutrients in the soil. Moreover, the bacterial diversity fluctuated with cultivation years, and 4-year-old ginseng roots had low bacterial diversity and evenness. In the first two years of cultivation, the bacterial community was more sensitive to soil nutrition compared to the last two years. Proteobacteria, Actinobacteria, Gemmatimonadetes, Acidobacteria, Firmicutes, and Bacteroidetes dominated the bacterial community regardless of the cultivation year and ecological niche. With the increase of cultivation years, the assembly of bacterial communities changed from stochastic to deterministic processes. The high abundance of Sphingobium, Novosphingobium, and Rhizorhabdus enriched in 4-years-old ginseng roots was mainly associated with variations in the available potassium (AK), total phosphorus (TP), total potassium (TK), and organic matter (OM).

Effects of Plant and Soil Amendment on Remediation Performance and Methane Mitigation in Petroleum-Contaminated Soil

  • Seo, Yoonjoo;Cho, Kyung-Suk
    • Journal of Microbiology and Biotechnology
    • /
    • 제31권1호
    • /
    • pp.104-114
    • /
    • 2021
  • Petroleum-contaminated soil is considered among the most important potential anthropogenic atmospheric methane sources. Additionally, various rhizoremediation factors can affect methane emissions by altering soil ecosystem carbon cycles. Nonetheless, greenhouse gas emissions from soil have not been given due importance as a potentially relevant parameter in rhizoremediation techniques. Therefore, in this study we sought to investigate the effects of different plant and soil amendments on both remediation efficiencies and methane emission characteristics in diesel-contaminated soil. An indoor pot experiment consisting of three plant treatments (control, maize, tall fescue) and two soil amendments (chemical nutrient, compost) was performed for 95 days. Total petroleum hydrocarbon (TPH) removal efficiency, dehydrogenase activity, and alkB (i.e., an alkane compound-degrading enzyme) gene abundance were the highest in the tall fescue and maize soil system amended with compost. Compost addition enhanced both the overall remediation efficiencies, as well as pmoA (i.e., a methane-oxidizing enzyme) gene abundance in soils. Moreover, the potential methane emission of diesel-contaminated soil was relatively low when maize was introduced to the soil system. After microbial community analysis, various TPH-degrading microorganisms (Nocardioides, Marinobacter, Immitisolibacter, Acinetobacter, Kocuria, Mycobacterium, Pseudomonas, Alcanivorax) and methane-oxidizing microorganisms (Methylocapsa, Methylosarcina) were observed in the rhizosphere soil. The effects of major rhizoremediation factors on soil remediation efficiency and greenhouse gas emissions discussed herein are expected to contribute to the development of sustainable biological remediation technologies in response to global climate change.

신갈나무 산림토양에서의 효소활성도 (Enzyme Activities in the Soil of Quercus mongolica Forests)

  • Song In-Geun;Yong-Keel Choi;Byung-Re Min
    • The Korean Journal of Ecology
    • /
    • 제18권4호
    • /
    • pp.503-512
    • /
    • 1995
  • The present paper describes partial results of the study on the activities of microbes in the soil of Quercus mongolica forest from July, 1994 to April, 1995. To determine the relationship between structure and function of soil microbial ecosystem, the author investigated the seasonal change of physical environmental factors, microbial population and soil enzyme activities. The changes of pH was not significant and the temperature of surface soil was 2℃ higher than lower soil through out the year. Moisture contents (%) of soil samples ranged from 7.64% to 42.11%. However, soils of site 3 at Mt. Komdan in which vegetation is successional have higher moisture content than the others. The bacterial population increased in summer, but continuously decreased in autumn and winter, and then reincreased again in spring. Bacterial population of surface soil was higher than those of 30 cm depth all the year round. Dehydrogenase activity (DHA) was about two-fold higher throughout in surface soil compared to those of lower soil. And the correlation coefficient between DHA and bacterial population size was 0,713, It was suggested that DHA could be used as a primary index of soil microbial population and activity in soil ecosystem.

  • PDF

Phylogenetic Analysis of Phenanthrene-Degrading Sphingomonas

  • Han, Kyu-Dong;Jung, Yong-Tae;Son, Seung-Yeol
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권6호
    • /
    • pp.942-948
    • /
    • 2003
  • Soil samples were obtained from 5 sites contaminated with polycyclic aromatic hydrocarbons (PAHs). These soil samples were cultured in using phenanthrene as a sole carbon and energy source, and 36 strains of phenanthrene-degrading bacteria were isolated from 3 sites. Most of them degraded 500 ppm of phenanthrene within 8 to 10 days, and these isolates could degrade a few other PAHs other than phenanthrene. Their genotypes were determined by restriction digests of the l6S rRNA genes [amplified ribosomal DNA restriction analysis (ARDRA)]. It was found that all the phenanthrene degrading isolates were included in 4 ARDRA types, and they showed a strict site endemism. l6S rDNAs of 12 strains selected from different sites were sequenced, and they were all confirmed as Sphingomonas strains. Their l6S rDNA sequences were compared for phylogenetic analysis; their sequence showed a similar result to ARDRA typing, thus indicating that these heterotrophic soil bacteria are not regionally mixed. In addition, it was found that the microbial diversity among sampling sites could be monitored by l6S rDNA PCR-RFLP pattern alone, which is simpler and easier to perform, without l6S rDNA sequence analysis.

Unrecorded Fungi Isolated from Fire Blight-controlled Apple Orchard Soil in Korea

  • Soo Young Chi;Jun Woo Cho;Hyeongjin Noh;Minseok Kim;Ye Eun Kim;Seong Hwan Kim
    • 한국균학회지
    • /
    • 제51권4호
    • /
    • pp.491-504
    • /
    • 2023
  • To explore fungal diversity in orchard soil where fire-blighted apple trees are buried, we collected soil samples from apple orchards in Chungju, Korea. Fungal isolates were obtained from DG18 agar and identified at the species level based on morphological features and phylogenetic analyses. The colony characteristics and microstructures were examined using a light microscope and a scanning electron microscope after culturing on potato dextrose agar (PDA), malt extract agar (MEA), Czapek yeast agar (CYA), and oatmeal agar (OA) The PCR-amplified products of the ITS1-5.8S-ITS2 region and 28S large subunit of the nuclear ribosomal RNA gene, as well as partial sequences of the β-tubulin, calmodulin, and translation elongation factor 1-α genes were sequenced and analyzed phylogenetically. Seven previously unknown fungal species were explored in Korea. All samples, including Aspergillus aureolatus, Botryotrichum atrogriseum, Dactylonectria novozelandica, Fusarium denticulatum, Paecilomyces tabacinus, Sarcopodium tibetense and Talaromyces stollii, had ascomycetes. Herein, we report their descriptions and features.

Analysis of Bacterial Community Structure in Bulk Soil, Rhizosphere Soil, and Root Samples of Hot Pepper Plants Using FAME and 16S rDNA Clone Libraries

  • Kim, Jong-Shik;Kwon, Soon-Wo;Jordan, Fiona;Ryu, Jin-Chang
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권2호
    • /
    • pp.236-242
    • /
    • 2003
  • A culture-independent and -dependent survey of the bacterial community structure in the rhizosphere and soil samples from hot pepper plants was conducted using 16S rDNA clone library and FAME analyses. Out of the 78 clones sequenced, 56% belonged to Proteobacteria, 4% to high G+C Gram- positive group, 3% to Cytophyga-Flexibacter-Bacreroides, and 32% could not be grouped with any known taxonomic division. Among the 127 FAME isolates identified, 66% belonged to low G+C Gram-positive bacteria (Baciilus spp.) and 26% to high G+C Gram-positive bacteria. In a cluster analysis, the results for both methods were found to be strikingly dissimilar. The current study is the first comparative study of FAME and 165 rDNA clonal analyses performed on the same set of soil, rhizosphere soil, and root samples.

토양중 방선균의 선택적 분리를 위한 배지 (A New Medium for the Selective Isolation of Soil Actinomycetes)

  • 조성화;황철원;정호권;양창술
    • 한국미생물·생명공학회지
    • /
    • 제22권5호
    • /
    • pp.561-563
    • /
    • 1994
  • For the more effective isolation of soil actinomycetes, we have developed HHV (Hair hydrolysate-vitamin) agar medium, containing hair as the sole source of carbon and nitrogen. The HHV agar medium was superior to other media such as colloidal chintin agar, glycerol-arginine agar and starch-casein-nitrate agar, and HV (humic acid-vitamin) agar. The maximum effect of this medium has been shown in hair dry weight 0.4 g/l medium. Of each soil sample, the greatestest number of actinomycetes was isolated from the potato annual planted soil among the tested samp- les. The genus of actinomycetes isolated from the potato annual planted soil sample was identified such 5 group as Stretomyces, Micromonospora, Microbispora, Nocardia and Saccharopolyspora.

  • PDF

Bacillus subtilis YB-70 as a Biocontrol Agent of Fusarium solani causing Plant Root-Rot

  • KIM, YONG-SU;HO-SEONG LIM;SANG-DAL KIM
    • Journal of Microbiology and Biotechnology
    • /
    • 제4권1호
    • /
    • pp.68-74
    • /
    • 1994
  • A bacterial strain YB-70 which has powerful biocontrol activity against Fusarium solani causing plant root-rot resulting in considerable losses of many economical crops was isolated and selected from over 500 isolates from a ginseng rhizosphere in suppressive soil, and identified as a strain of Bacillus subtilis. In several biochemical and in vitro antibiosis tests on F. solani with culture filterates from B. subtilis YB-70, our data strongly indicated metabolites which mediated inhibition of the fungal growth were presumed to be heat-stable, micromolecular, and ethyl alcohol solutable antifungal substances. Suppression of root-rot by B. subtilis YB-70 was demonstrated in pot trials with eggplant (Solanum melongena L) seedlings. Treatment of the seedling with the bacterial suspension (1.7~1.9$\times$$10^5$ CFU/g) in F. solani-infested soil significantly reduced disease incidences by 68 to 76% after 25 to 30 days. The results supported that B. subtilis YB-70 have excellent potentials as a biocontrol agent.

  • PDF