• Title/Summary/Keyword: Soil microbial fertilizer

Search Result 260, Processing Time 0.032 seconds

Effects of a Biological Amendment on Chemical and Biological Properties and Microbial Diversity in Soils Receiving Different Organic Amendments (각기 다른 유기물이 투여된 토양에서 토양의 화학적, 미생물학적 특성과 미생물의 다양성에 미치는 생물비료의 효과)

  • Park, Kee-Choon;Kremer, Robert J.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.4
    • /
    • pp.234-241
    • /
    • 2007
  • Biological amendments consisting of suspensions of selected microorganisms are often used in conjunction with various organic materials for amending soils to improve soil quality and plant growth. The effects of the biological amendment on chemical and biological properties of soil were investigated for a biological amendmentalone and when combined with different organic materials includingmunicipal compost (MC), poultry litter (PL), and cover crops (red clover (RC) and spring oats). A liquid preparation of a biological amendment called Effective Microorganisms was sprayed on the tested plots three times over a two-year period. Effective Microorganisms alone did not influence pH, K, or organic matter content in soil. However, increases in P in PL-treated soils in fall of both years andCa in MC-treated soil in fall 2001, and decreases in Ca, Mg, and cation exchange capacity (CEC) in RC-planted soil were associated with EM. Increased dehydrogenase(DH) activitiesassociated with Effective Microorganismswere only detected in July (P=0.0222) and October (P=0.0834) for RC-planted soils in the first year. Fluorescein diacetate (FDA) hydrolysisappeared to be enhanced by Effective Microorganisms in soils untreated or treated with MC and oatsbut only sporadically during the sampling period. FDA hydrolysis in both PL- and RC-treated soils as well as DH activity in PL-treated soils decreased with Effective Microorganisms treatment. Effective Microorganisms did not influence substrate utilization patterns expressed by the BIOLOG assay. We conclude that Effective Microorganisms effects on soil chemical and biological properties varied depending on the added organic materials. Effective Microorganisms periodically increased soil DH activity and FDA hydrolysis with RC and with MC plus oats, respectively.

Analysis of Bacterial Community Structure in the Soil and Root System by 168 rRNA Genes (16S rDNA를 이용한 토양, 작물근계의 세균군집 구조해석)

  • Kim, Jong-Shik;Kwon, Soon-Wo;Ryu, Jin-Chang;Yahng, Chang-Sool
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.4
    • /
    • pp.266-274
    • /
    • 2000
  • Understanding of microbial community structure in soil-root system is necessary to use beneficial soil and rhizosphere microbes for improvement of crop production and biocontrol. The knowledge of behavior and function of microbes in soil-root system plays a key role for the application of beneficial inocula. Because the majority of the intact bacteria in soil are unable to grow on nutrient media, both culturable and nonculturable bacteria have to be studied together. In our study, culture-independent survey of bacterial community in the soil-root system of red pepper fields was conducted by the sequence analysis of three universal clone libraries of genes which code for small-subunit rRNA (rDNA). Universal small subunit rRNA primers were used to amplify DNA extracted from each sample and PCR products were cloned into pGEM-T. Out of 27 clones sequenced, 25 clones were from domain bacteria. Two of the rDNA sequences were derived from eukaryotic organelles. Within the domain bacteria, several kingdoms were represented : the Proteobacteria (16 clones). Cytophyga-Flexibacter-Bacteroides group (2 clones). the high G+C content gram-positive group(1 clone) and 4 unknown clones.

  • PDF

Pathogenic E. coli Inactivation in Upland Soils to a Change of Soil Moisture Content and Temperature (밭토양에서 토양수분과 온도변화에 따른 분변성 대장균 사멸율 변화)

  • Kim, Min-Kyeong;Kim, Min-Young;Choi, Chul-Man;Ko, Byong-Gu;Kwon, Soon-Ik;Weon, Hang-Yeon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.1
    • /
    • pp.90-95
    • /
    • 2010
  • The application of livestock manure to cropland is a practice that has been used for centuries. Agricultural crops can utilize nutrients from manure, and the producer can utilize land for disposal, although in a "sustainable system" the concept is manure utilization and not waste disposal. However, meeting regulatory criteria regarding microbial quality remains an expensive and time consuming process. The purpose of this study was to quantify the level of environmental impact of soil moisture and temperature on fecal coliform (Escherichia coli or E. coli) survival in upland soils for sound application of livestock manure. Samples were collected up to 30 days depending on the given conditions. The inactivation rate of E. coli increased linearly with increased temperature while the inactivation rate gradually decreased with decreased soil moisture level. The overall findings of this study showed that the temperature was the limited factor on E. coli survival in soils over soil moisture content. This study will provide useful and practical guidelines to applicators of soil in deciding appropriate handling and time frames for land application for sustainable agriculture.

Morphological and Phylogenetic Characteristics of Nematophagous Fungi (식물기생성 선충 포식곰팡이의 형태 및 계통분류학적 특성)

  • Kang, Doo-Sun;Jeon, Han-Ki;Son, Hee-Seong;Whang, Kyung-Sook;Cho, Cheon-Whi
    • Applied Biological Chemistry
    • /
    • v.50 no.2
    • /
    • pp.101-106
    • /
    • 2007
  • Twenty-two strains of nematophagous fungi were isolated from 100 soil samples. Nematophagous fungi were classified into three categories; 3-dimensional adhesive nets (A group), 2-dimensional adhesive nets (B group) and constricting ring (C group). Nine strains were selected and identified on the basis of morphological characteristics (hypha, conidiophore, form and size of conidia, number of conidia, node of conidophore, number and location of septa, size and color of chlamydospore) and ITS (internal transcribed spacer) region of rDNA sequences. As the results, the isolated were identified as belonging to the species of Monacrosporium thaumasium (Kan-2, Kan-4, Kan-11), Arthrobotrys oligospora (Kan-9, Kan-13, Kan-20, Kan-21), A. musiformis (Kan-12), and A. dactyloides (Kan-22).

Effects of Pesticides on Soil Microflora - Changes in Soil Microflora by Application of Organochlorine Pesticides - (농약(農藥)이 토양미생물상(土壤微生物相)에 미치는 영향(影響) -유기염소계(有機鹽素系) 살균제(殺菌劑) 및 살충제살포(殺蟲劑撒布)에 따른 전토양미생물상(田土壤微生物相)의 변동(變動)-)

  • Yang, Chang-Sool
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.17 no.3
    • /
    • pp.299-306
    • /
    • 1984
  • The influences of applications of organochlorine insecticide (HCH: Hexachlorocyclohexane, 10 ppm), fungicide (TPN: Tetrachloroisophthalonitrile, 40 ppm) and manure ($3Kg/m^2$) each or together on changes in soil microflora for consecutive years were investigated in the experimental field plots. The insecticide had a little effect on soil microbial numbers. In particular, the number of total bacteria, Gram-negative bacteria and fungi were gradually increased at the latter stage of the consecutive application, but the number of sporeforming bacteria reduced. The fungicide reduced the counts of sporeforming bacteria, actinomycetes and fungi respectively, whereas increased prominently the counts of total bacteria and Gram-negative bacteria. TPN-resistant bacteria, particulary TPN-resistant Gram-negative bacteria were gradually accumulated by the long-term application of TPN, and further the number of TPN-resistant total bacteria and the of TPN-resistant Gram-negative bacteria correlated fairly well during all the period. The influences of combined applications of both HCH and TPN on the number of soil microorganisms were equal to the respective sums of the effects of single application of each pesticide. The combined application of manure and these pesticides elevated the increasing extents of microbial numbers, while weakened the detrimental efforts of these pesticides on microbial numbers. These data suggest that the long-term application of these materials have resulted in the remarkable changes of composition of soil microflora.

  • PDF

Soil Carbon and Microbial Activity Influenced by Pasture and Rice Paddy Management (목초재배지 및 벼논 관리 변화에 따른 토양 탄소 및 미생물 활성도)

  • Yoo, Ga-Young;Kim, Hyun-Jin;Kim, Ye-Sol;Jung, Min-Hung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.435-443
    • /
    • 2012
  • This study investigated soil carbon storage and microbial activities influenced by different management practices in rice paddies and pastures. Soils under a single-crop farming of rice (CON) and rice-Italian ryegrass rotation farming (IRG) were compared in Jangheung, Jeollanam-do, Seocheon and Cheonan, Chungcheongnam-do. Soils from pastures were analyzed to investigate the effect of duration period (P1, P2, P3) in Namwon, Jeollabuk-do and Seosan, Chungcheongnam-do. In rice paddy, total and particulate carbon (PC) concentrations in the IRG soils were significantly higher than those in the CON soils both in Jangheung and Seocheon where the IRG has been established for three years, whereas carbon concentrations were not significantly different in Cheonan where IRG planting history is only one year. In rice paddy soils, PC was suggested as an early indicator to monitor changes in soil carbon storage followed by adopting different management practices. In pasture, total and PC concentrations increased with duration period especially in the 0-5 cm soils. Contrary to the rice paddy soils, the magnitude of change in PC concentration is not as great as that in total carbon concentration, implying that there is a need to develop a new early indicator other than PC using different fractionation scheme. The soil carbon storage in pasture also increased with years since establishment and the increasing rate was significantly greater in the early stage (0-5 yrs) than the later one (> 5 yrs). Microbial activities measured from fluorescein diacetate (FDA) hydrolysis analysis were significantly lower in the IRG soils than CON soils, whereas no difference was observed in the pastures of different ages. This shows that FDA activity is not a sensitive indicator to differentiate soil qualities influenced by management practices if it is used by itself.

Population Dynamics of Effective Microorganisms in Microbial Pesticides and Environmental-friendly Organic Materials According to Storing Period and Temperature (저장기간 및 저장온도에 따른 미생물농약 및 친환경 유기농자재 유효미생물의 밀도변동)

  • Kim, Yong-Ki;Hong, Sung-Jun;Jee, Hyung-Jin;Shim, Chang-Kee;Park, Jong-Ho;Han, Eun-Jung;An, Nan-Hee;Lee, Seong-Don;Yoo, Jae-Hong
    • The Korean Journal of Pesticide Science
    • /
    • v.15 no.1
    • /
    • pp.55-60
    • /
    • 2011
  • To work out quality control methods of environmental-friendly organic materials (EFOMs), the reason and basis for EFOM-selection and farmer's favorite formulation type of EFOMs, etc were investigated on farmers who had been practicing environmental-friendly agriculture. EFOMs used were soil amendments, control agents of plant diseases and insect pests, plant growth promotion formulations, in turns. In EFOMs application time, 22.7% of farmers sprayed EFOMs without delay after they were bought, in other hand, 77.3% of farmers used EFOMs which had been bought and stored for some period. Microbial density on seventeen environmental-friendly microbial formulates (EFMFs) including microbial pesticides, a microbial fertilizer, and environmental-friendly organic materials was investigated at different storing temperature and shelf life. When the microbial density of EFMFs was investigated without delay after they were bought, all used microbial pesticides and a microbial fertilizer was confirmed to be optimal for the certified density but two of environmental-friendly organic materials was confirmed not to be optimal. When microbial density of 17 EFMFs were investigated after storing them for six months at $4^{\circ}C$, only one of 9 microbial pesticides was confirmed not to be optimal, the other hand four of seven environmental-friendly organic materials not to be optimal, which each of their microbial density was less than the certified density. Population dynamics of microbial agents was much more influenced in fluctuated temperature (room temperature) than in static temperature condition ($5^{\circ}C$ and $25^{\circ}C$). Shelf life of microbial agents according to microbial formulation type were high in granule type, liquid wettable type and liquid type in turns.

Manufacturing Fermented Rapeseed Meal Compost using Two Microbial Agents and the Effect of Their Application (유용 미생물 제제 이용 발효 유채박 비료 제조 및 시용 효과)

  • Lee, Ji-Eun;Park, Won;Kim, Kwang-Soo;Lee, Yong-Hwa;Kwon, Da-Eun;Moon, Youn-Ho;Cha, Young-Lok;Kang, Yong-Ku
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.55-62
    • /
    • 2019
  • Rapeseed meal, which is a byproduct of rapeseed oil extraction, improves crop productivity by supplying nutrients to the soil. The present study aimed to manufacture fermented rapeseed meal compost using two effective microbial agents and evaluate their efficiency as fertilizer. To types of fermented rapeseed meal, manufactured using either a bio-carrier or microbial agent, showed no differences in pH, electrical conductivity (EC), and total nitrogen content. However, the contents of $NH_4-N$ and $NO_3-N$ as inorganic nitrogen were increased by 5.6 times and 1.5 times, respectively, after 5 d of fermentation. Rapeseed meal fermented for 5 d was applied to tomato a basal fertilizer and after eight weeks, the plant height increased in all fermented rapeseed treatments compared to that in the chemical fertilizer treatment, and also the quantum yield of photosystem II (PS II) showed the same trend. The total nitrogen content of tomato leaves treated with a microbial fermented rapeseed meal was twice as high as that of that treated with a chemical fertilizer. It was confirmed that the increase in the tomato height was an effect of the rapeseed meal containing inorganic nitrogen, which can easily be absorbed by plants. From these results, it is considered that fermented rapeseed meal manufactured with an effective microbial agent for 5 d showed the highest inorganic nutrient content and greatest growth enhancement in tomato.

Effect of Fertigation with Indigenous Microorganism and EM on Soil Chemical and Microbial Properties and Growth of Cherry Tomatoes (토착미생물과 EM 활용 액비 처리가 방울토마토의 토양 화학성과 미생물상 및 생장에 미치는 영향)

  • Choi, Hyun-Sug;Jung, Ji-Sik;Kuk, Yong-In;Choi, In-Young;Jung, Seok-Kyu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.4
    • /
    • pp.15-24
    • /
    • 2019
  • The study was compared for soil chemical and microbial properties as well as growth of the cherry tomato (Lycopersicon esculentum var. cerasiforme) plants environmentally friendly gown for 3 years and 5 years, which had been fertigated with homemade liquid fertilizer (LF) with indigenous microorganism as an additional fertilizer. Treatment included LF with indigenous microorganism for 3 years (3-year IM-LF) and for 5 years (5-year IM-LF), with an effective microorganism for 10 years (EM-LF), which had been applied with 1,000 times of dilution in the farmhouse. IM-LF and EM-LF materials had increased pH pattern for 16 weeks, in particular for increase of 1.2 for EM-LF. IM-LF material contained slightly higher EC but similar level of 0.2 dS/m to EM-LF. For a pot experiment in the greenhouse, IM-LF treatment increased root dry weight of the cherry tomato plants. In the farmhouse experiment, IM-LF treatment increased to 7.5 of soil pH and 8.4 dS/m of EC, indicating high salt accumulation. EM-LF treatment increased to 62 g/kg of soil OM, which would have affected concentrations of macro essential nutrients, including T-N in the soil. However, the optimum soil chemical levels for growth of cherry tomato plants were observed on the IM-LF plots. EM-LF treatment increased number of bacteria and actinobacteria in the soil. EM-LF treatment increased concentrations of macro essential nutrients in the plants, except for P, with similar nutrient concentrations observed between 3-year IM-LF and 5-year IM-LF-treated plants. Leaf SPAD and PS II levels decreased in the plants treated with 3-year IM-LF. EM-LF treatment increased leaf width and length, number of leaves, canopy area, plant height, and stem diameter in the mid-term stage of growth, which were not significantly different between the treatments. EM-LF treated-plants had two times higher leaf dry weight than those of values observed on the IM-LF plants, which was the opposite result observed on the number of fruit.

The Effect of Thatch Decomposing by Application with Composted Liquid Manure and Microorganism Medium in Golf Course Soil (배양미생물과 가축분뇨발효액비의 시비가 골프코스 토양 중 대취분해에 미치는 영향)

  • Ham, Suon Kyu;Lim, Ji Yeon;Lee, Yeong Min
    • Weed & Turfgrass Science
    • /
    • v.3 no.4
    • /
    • pp.342-346
    • /
    • 2014
  • The purpose of this experiment is for investigating how much the amino acid liquid fertilizer and composted liquid manure, culture microorganism effect on the breeding of grasses and knowing the extent of the thatch content through an analysis of the soil. For testing about soil chemical, the quality of grasses, and the extent of the thatch content in the soil, we cultivated 6 kinds of microorganisms having the effect of thatch dissolution and sprayed these 6 microorganisms with composted liquid manure and the amino acid liquid fertilizer on the place Creeping bentgrass have planted. This conduction started from June to October, 2012 and 2013 (The interval: 2 weeks). In the result of the turf growth, there is no big difference between soil chemical and trace element. And we can know Leaf Color Index, Chlorophyll Index and Root Length are almost same as among treatment. In conclusion, the mixing fertilization of culture microorganism and composted liquid manure is better effective than the traditional fertilization. And it can be expected the effect of the quality of grass and Thatch decomposition in soil.