• Title/Summary/Keyword: Soil mechanics

Search Result 497, Processing Time 0.025 seconds

A Study on Soil-Water Characteristic Curves of Reclaimed Soil and Weathered Granite Soil (준설매립토 및 화강풍화토의 흙-수분 특성곡선에 관한 연구)

  • 신은철;이학주;김환준
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.03a
    • /
    • pp.743-750
    • /
    • 2002
  • Unsaturated soil has a possibility to induce a negative pore water pressure. Until now, saturated soil is mainly focused on the research of soil mechanics. Recently, soil mechanics is researched on two major parts such as saturated and unsaturated soil mechanics. Negative pore water pressure has a non-linear relationship with the water content changes. Soil-water characteristic curves of soil in Korea are not determined. There is no proper characteristic value such as air-entry value and residual water content. In this study, the characteristic curves of reclaimed soil, sand, and weathered granite soil were determined by laboratory tests. Air-entry value and residual water content were determined by fitting methods. Soil-water characteristic curves were estimated based on the particle-size distribution and compared with the laboratory test results. The results of soil-water characteristic curves estimation indicated that Fredlund and Wilson's model is excellent for sand and weathered granite soil. Arya and Paris's model is excellent for reclaimed soil.

  • PDF

Investigation on moisture migration of unsaturated clay using cross-borehole electrical resistivity tomography technique

  • Lei, Jiang;Chen, Weizhong;Li, Fanfan;Yu, Hongdan;Ma, Yongshang;Tian, Yun
    • Geomechanics and Engineering
    • /
    • v.25 no.4
    • /
    • pp.295-302
    • /
    • 2021
  • Cross-borehole electrical resistivity tomography (ERT) is an effective groundwater detection tool in geophysical investigations. In this paper, an artificial water injection test was conducted on a small clay sample, where the high-resolution cross-borehole ERT was used to investigate the moisture migration law over time. The moisture migration path can be two-dimensionally imaged based on the relationship between resistivity and saturation. The hydraulic conductivity was estimated, and the magnitude ranged from 10-11 m/s to 10-9 m/s according to the comparison between the simulation flow and the saturation distribution inferred from ERT. The results indicate that cross-borehole ERT could help determine the resistivity distribution of small size clay samples. Finally, the cross-borehole ERT technique has been applied to investigate the self-sealing characteristics of clay.

Model tests for the inhibition effects of cohesive non-swelling soil layer on expansive soil

  • Lu, Zheng;Tang, Chuxuan;Yao, Hailin;She, Jianbo;Cheng, Ming;Qiu, Yu;Zhao, Yang
    • Geomechanics and Engineering
    • /
    • v.29 no.1
    • /
    • pp.91-97
    • /
    • 2022
  • The cohesive non-swelling soil (CNS) cushion technology has been widely applied in the subgrade and slope improvement at expansive soil regions. However, the mechanism of the inhibition effect of the CNS layer on expansive soil (ES) has not been fully understood. We performed four outdoor model tests to further understand the inhibition effect, including different kinds of upper layer and thickness, under the unidirectional seepage condition. The swelling deformation, soil pressure, and electrical resistivity were constantly monitored during the saturation process. It is found that when a CNS layer covered the ES layer, the swelling deformation and electrical resistivity of the ES layer decreased significantly, especially the upper part. The inhibition effect of the CNS layer increases with the increase of CNS thickness. The distribution of vertical and lateral soil pressure also changed with the covering of a CNS layer. The electrical resistivity can be an effective index to describe the swelling deformation of ES layer and analyze the inhibition effect of the CNS layer. Overall, the CNS deadweight and the ion migration are the major factors that inhibit the swelling deformation of expansive soil.

Boundary stress resolution and its application to adaptive finite element analysis

  • Deng, Jianhui;Zheng, Hong;Ge, Xiurun
    • Structural Engineering and Mechanics
    • /
    • v.6 no.1
    • /
    • pp.115-124
    • /
    • 1998
  • A novel boundary stress resolution method is suggested in this paper, which is based upon the displacements of finite element analysis and of high precision with stress boundary condition strictly satisfied. The method is used to modify the Zienkiewicz-Zhu ($Z^2$) a posteriori error estimator and for the h-version adaptive finite element analysis of crack problems. Successful results are obtained.

Effect of particle size on direct shear deformation of soil

  • Gu, Renguo;Fang, Yingguang;Jiang, Quan;Li, Bo;Feng, Deluan
    • Geomechanics and Engineering
    • /
    • v.28 no.2
    • /
    • pp.135-143
    • /
    • 2022
  • Soils are natural granular materials whose mechanical properties differ according to the size and composition of the particles, so soils exhibit an obvious scale effect. Traditional soil mechanics is based on continuum mechanics, which can not reflect the impact of particle size on soil mechanics. On that basis, a matrix-reinforcing-particle cell model is established in which the reinforcing particles are larger-diameter sand particles and the matrix comprises smaller-diameter bentonite particles. Since these two types of particles deform differently under shear stress, a new shear-strength theory under direct shear that considers the stress concentration and bypass phenomena of the matrix is established. In order to verify the rationality of this theory, a series of direct shear tests with different reinforcing particle diameter and volume fraction ratio are carried out. Theoretical analysis and experimental results showed that the interaction among particles of differing size and composition is the basic reason for the size effect of soils. Furthermore, the stress concentration and bypass phenomena of the matrix enhance the shear strength of a soil, and the volume ratio of reinforcing particles has an obvious impact on the shear strength. In addition, the newly proposed shear-strength theory agrees well with experimental values.

A quasi-static finite element approach for seismic analysis of tunnels considering tunnel excavation and P-waves

  • Zhao, Wusheng;Zhong, Kun;Chen, Weizhong;Xie, Peiyao
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.549-559
    • /
    • 2022
  • The quasi-static finite element (FE) approaches are widely used for the seismic analysis of tunnels. However, the conventional quasi-static approaches may cause significant deviations when the tunnel excavation process is simulated prior to the quasi-static analysis. In addition, they cannot account for vertical excitations. Therefore, this paper first highlights the limitations of conventional approaches. A hybrid quasi-static FE approach is subsequently proposed and extensively validated for various conditions. The hybrid approach is simple and not time consuming, and it can be used for the preliminary seismic design of tunnels, especially when the tunnel excavation and vertically propagating P-waves are considered.

Experimental study on Microbially Induced Calcite Precipitation for expansive soil stabilization

  • Zheng Lu;Yu Qiu;Jie Liu;Chengcheng Yu; Hailin Yao
    • Geomechanics and Engineering
    • /
    • v.32 no.1
    • /
    • pp.85-96
    • /
    • 2023
  • Microbially induced carbonate precipitation (MICP) is extensively discussed as a promising topic for ground stabilization. The practical effect of stabilizing the expansive soil is presented in this paper with a logical process from the bacterial activity to the treatment technology. Temperature, pH, shaking frequency, and inoculation amount are discussed to evaluate the bacterial activity. The physic-mechanic properties are also evaluated to discuss the effect of the MICP process on expansive soil. Results indicate that the MICP method achieves the mitigation of expansion. The treated soil has a low proportion of fine particles (< 5 ㎛), the plasticity index significantly decreases, and strength values improve much. MICP process has a significant cementation effect on the soil matrix. Moreover, the infiltration model test presents the coating effect on the topsoil. According to the relation between the CaCO3 content and the treatment effect, the topsoil has better treatment than the deeper soil.

Behavior of geotextile reinforced flyash + clay-mix by laboratory evaluation

  • Vashi, Jigisha M.;Desai, Atul K.;Solanki, Chandresh H.
    • Geomechanics and Engineering
    • /
    • v.5 no.4
    • /
    • pp.331-342
    • /
    • 2013
  • The major factors that control the performance of reinforced soil structures is the interaction between the soil and the reinforcement. Thus it is necessary to obtain the accurate bond parameters to be used in the design of these structures. To evaluate the behavior of flyash + clay soil reinforced with a woven geotextile, 36 Unconsolidated-Undrained (UU) and 12 reinforced Consolidated-Undrainrained (CU) triaxial compression tests were conducted. The moisture content of soil during remolding, confining pressures and arrangement of geotextile layers were all varied so that the behavior of the sample could be examined. The stress strain patterns, drainage, modulus of deformation, effect of confinement pressures, effects of moisture content have been evaluated. The impact of moisture content in flyash + clay backfills on critical shear parameters was also studied to recommend placement moisture for compaction to MDD. The results indicate that geotextile reinforced flyash + clay backfill might be a viable alternative in reinforced soil structures if good-quality granular backfill material is not readily available.

Evolution of pullout behavior of geocell embedded in sandy soil

  • Yang Zhao;Zheng Lu;Jie Liu;Jingbo Zhang;Chuxuan Tang;Hailin Yao
    • Geomechanics and Engineering
    • /
    • v.38 no.3
    • /
    • pp.275-284
    • /
    • 2024
  • This paper aims to explore the evolution of the pullout behavior of geocell reinforcement insights from three-dimensional numerical studies. Initially, a developed model was validated with the model test results. The horizontal displacement of geocells and infill sand and the passive resistance transmission in the geocell layer were analyzed deeply to explore the evolution of geocell pullout behavior. The results reveal that the pullout behavior of geocell reinforcement is the pattern of progressive deformation. The geocell pockets are gradually mobilized to resist the pullout force. The vertical walls provide passive pressure, which is the main contributor to the pullout force. Hence, even if the frontal displacement (FD) is up to 90m mm, only half of the pockets are mobilized. Furthermore, the parametric studies, orthogonal analysis, and the building of the predicted model were also carried out to quantitative the geocell pullout behavior. The weights of influencing factors were ranked. Ones can calculate the pullout force accurately by inputting the aspect ratio, geocell modulus, embedded length, frontal displacement, and normal stress.

On the effect of void ratio and particle breakage on saturated hydraulic conductivity of tailing materials

  • Ma, Changkun;Zhang, Chao;Chen, Qinglin;Pan, Zhenkai;Ma, Lei
    • Geomechanics and Engineering
    • /
    • v.25 no.2
    • /
    • pp.159-170
    • /
    • 2021
  • Particle size of tailings in different areas of dams varies due to sedimentation and separation. Saturated hydraulic conductivity of high-stacked talings materials are seriously affected by void ratio and particle breakage. Conjoined consolidation permeability tests were carried out using a self-developed high-stress permeability and consolidation apparatus. The hydraulic conductivity decreases nonlinearly with the increase of consolidation pressure. The seepage pattern of coarse-particle tailings is channel flow, and the seepage pattern of fine-particle tailings is scattered flow. The change rate of hydraulic conductivity of tailings with different particle sizes under high consolidation pressure tends to be identical. A hydraulic conductivity hysteresis is found in coarse-particle tailings. The hydraulic conductivity hysteresis is more obvious when the water head is lower. A new hydraulic conductivity-void ratio equation was derived by introducing the concept of effective void ratio and breakage index. The equation integrated the hydraulic conductivity equation with different particle sizes over a wide range of consolidation pressures.