• Title/Summary/Keyword: Soil mechanical characteristics

Search Result 236, Processing Time 0.031 seconds

Extraction Characteristics and Quantitational Methods for Total Petroleum Hydrocarbons in Soil

  • Jeon, Chi-Wan;Lee, Jung-Hwa;Song, Kyung-Sun;Lee, Sang-Hak;Lee, Jung-Min
    • Proceedings of the Korean Environmental Sciences Society Conference
    • /
    • 2003.11a
    • /
    • pp.119-122
    • /
    • 2003
  • Quantitation methods of total petroleum hydrocarbons to determinate oil contaminated level in soil were discussed. Extraction characteristics of several pretreatment methods and practical detection limit and reappearances in gas chromatography/mass spectrometry. with each pretreatment method were investigated. The obtained results showed that the newly adopted quantitation method and mechanical shaking extraction method using methanol with extraction solvent are more practical and applicable to real sample than the conventional methods. In applying these methods to gasoline, kerosene, fuel oil which are major source of soil contamination, the practical quantitation limit and % relative standard deviation was able to determine with range of 2.5 - 10 ppm, 5 - 7 %.

  • PDF

Construction of Environmentally Friendly Roadbed by Reinforecing Type Soil Solidification Agent (보강형 고화제를 이용한 친환경 도로노반조성 방안)

  • Koh, Yong-Kook
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.667-671
    • /
    • 2004
  • The purpose of this paper is to study on the construction of environmentally friendly roadbed by reinforcing type soil solidification agent. The soil amendment agent used in this study is friendly to the environment, and has a function of soil-cement-agent solidification. The soil amendment agent was admixed with reinforced fiber material for enhancement of strength and durability of roadbed. The project of trial field test of roadbed construction with special reinforcing soil treatment agent was performed in Gyunggido on December 2003. A series of field and laboratory experiments including unconfined compressive strength, permeability were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this reinforced solidifying agent. The results of this research showed that the roadbed using normal and poor soil could be efficiently constructed by treatment of this reinforcing type solidification agent admixed with fiber material.

  • PDF

A Study on Prediction of Maximum Steering Torque of Tractor on Off-road (Off-road에서 트랙터의 최대 조타력 예측에 관한 연구)

  • Kim S.Y.;Lee K.S.;Lee S.S.;Lee S.B.;Lee J.W.;Park W.Y.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.2 s.115
    • /
    • pp.81-87
    • /
    • 2006
  • In this study, a mathematical model was suggested to predict the maximum steering torque of a tractor on off-road. The model took into account the characteristics of soil, including the pressure-sinkage and the shearing characteristics as well as the primary design parameters of steering system of the tractor. The efficiency of the developed model was verified via comparison of the maximum steering torque predicted using the model with those measured from steering torque test. The results showed that the predicted maximum steering torques were in good agreement with the measured ones from the steering test on soft soil in which tractor is generally operated. Thus, we concluded that the model developed in this study could be used for prediction of maximum steering torque of a tractor.

Construction of roadbed with environmental friendly soil amendment agent (친환경 토질개량제를 이용한 도로노반 건설공사에 관한 연구)

  • 고용국
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2003.03a
    • /
    • pp.417-421
    • /
    • 2003
  • The purpose of this paper is to study on the construction of roadbed with environmental friendly soil amendment agent. The special amendment agent used in this study is mainly composed of inorganic metal salts such as sodium chloride, magnesium chloride, potassium chloride, calcium chloride,, thus is friendly to the environment, and has a function of soil-cement-agent solidification. Various components of this agent weaken the negative function of humic acid and decompose humic acid itself. Then, the calcium cation of the cement can now be made contact directly to the soil surface. The project of local road demonstration of roadbed construction with special soil treatment agent was peformed in Northeast Thailand on August 1999 by the sponsor of Highway Department of Thailand. A series of field experiments including unconfined compressive strength were carried out to investigate the physical and mechanical characteristics of solidified roadbed treated by this solidifying agent. The results of this research showed that the roadbed using poor soil could be efficiently constructed by treatment of this amendment agent.

  • PDF

A Estimate Method of the Consolidation Yield Stress in Compacted soil using the Mechanical Characteristics of Unsaturated soil (불포화토의 역학적 특성을 이용한 다짐토의 항복응력의 산정방법)

  • Kim, Eun-Ra;Iizuka, Atsushi;Kim, You-Seong
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.121-128
    • /
    • 2005
  • This paper introduces a method of predicting the behavior of compacted soil with an unsaturated soil mechanics by considering the effect of suction as an increasing consolidation yield stress. Two kinds of experiments were conducted. One is a series of static compaction tests to monitor the suction, and the other is a series of compression tests on compacted soil without soaking. The results of our tests indicate that it is possible to derive the distribution of suction on compaction curves and to hypothesize the changes in void ratio in the compression tests that depends on the suction. In addition, a new method is proposed to estimate the consolidation yield stress of compacted soil with a simple chart including compaction curves.

  • PDF

A Numerical Study on the Occurrence Scope of Underground Cavity and Relaxation Zone Considering Sewerage Damage Width and Soil Depth (하수관거 파손폭과 토피고를 고려한 지중 공동 및 이완영역 발생 규모에 관한 수치해석적 연구)

  • You, Seung-Kyong;Ahn, HeeChul;Kim, Young-Ho;Han, Jung-Geun;Hong, Gigwon;Park, Jeong-Jun
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.1
    • /
    • pp.43-53
    • /
    • 2019
  • This paper described a result of finite element analysis considering sewerage damage scale and soil depth, in order to analyze quantitatively for cavity and relaxation zone of underground due to sewerage damage. The mechanical model, which was verified by previous studies, was applied to the finite element analysis. In addition, the mechanical behavior of the soil around the sewerage damage due to the soil loss was simulated by using the forced displacement. Based on finite element analysis results, characteristics of the void ratio distribution, ground subsidence, and shear stress distribution according to sewerage damage scale and soil depth were analyzed. And then, The boundaries of the underground cavity and relaxation zone were determined by using the shear stress reduction characteristics of the ground. Also, an occurrence scope of the cavity and relaxation zone was quantitatively evaluated by the change of sewerage damage scale and soil depth.

Influence of Repeated Loading, Alternation of Temperature and Initial Condition on the Change of Strizctural and Mechanical Characteristics of Alluvial Clayey Soil (반복하중,온도변화 및 초기조건이 충적점토의 구조변화와 역학적 특성에 미치는 영향)

  • 유능구;유영선;최중대;김기성
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.34 no.4
    • /
    • pp.69-79
    • /
    • 1992
  • To estimate soil behavior and structural characteristics under the conditions of cyclic loading, freezing & thawing and initial state, several testing was performed and obtained following results. 1.After repeated freezing and thawing processes, original soil structure was destroyed and changed to globular structure from honeycomb or tube in its structure types. Also above processes resulted increasing the soil compression strain while decreasing the failure stress in stress-strain relationship and reached the soil structure into the mode of brittle fracture. Under cyclic loading conditions, soil cluster which was originally dispersed structure colloided with each other, seperated, and finally the soil failed due to the effect of overcompaction. 2.Through the stabilization processes seperated by four steps, the structure of soil skeleton was changed to quite different globular type. The degree of compressibility of soil was decreased in the normally consolidated zone, while the strength against external load increased due to soil particle stabilization. 3.Soil stress-strain chracteristics were largely influenced by repeated up and down processes of temperature. The maximum deformation was obtained in the case of temperature between 0 10˚C by the reseon of particle cluster reformation. 4.Soil compressibility was largely influenced by the optimum moisture content. Under freezing process, swelling could be found and its magnitude was proportional to the density of soil. 5.Density of soil was decreased as increasing the number or repeated freezing and thawing processes and the largest decreasing rate was found at the first turning point from freezing to thawing cycle.

  • PDF

Estimation of spatial autocorrelation variations of uncertain geotechnical properties for the frozen ground

  • Wang, Di;Wang, Tao;Xu, Daqing;Zhou, Guoqing
    • Geomechanics and Engineering
    • /
    • v.22 no.4
    • /
    • pp.339-348
    • /
    • 2020
  • The uncertain geotechnical properties of frozen soil are important evidence for the design, operation and maintenance of the frozen ground. The complex geological, environmental and physical effects can lead to the spatial variations of the frozen soil, and the uncertain mechanical properties are the key factors for the uncertain analysis of frozen soil engineering. In this study, the elastic modulus, strength and Poisson ratio of warm frozen soil were measured, and the statistical characteristics under different temperature conditions are obtained. The autocorrelation distance (ACD) and autocorrelation function (ACF) of uncertain mechanical properties are estimated by random field (RF) method. The results show that the mean elastic modulus and mean strength decrease with the increase of temperature while the mean Poisson ratio increases with the increase of temperature. The average values of the ACD for the elastic modulus, strength and Poisson ratio are 0.64m, 0.53m and 0.48m, respectively. The standard deviation of the ACD for the elastic modulus, strength and Poisson ratio are 0.03m, 0.07m and 0.03m, respectively. The ACFs of elastic modulus, strength and Poisson ratio decrease with the increase of ratio of local average distance and scale of fluctuation. The ACF of uncertain mechanical properties is different when the temperature is different. This study can improve our understanding of the spatial autocorrelation variations of uncertain geotechnical properties and provide a basis and reference for the uncertain settlement analysis of frozen soil foundation.

Strength and Deformation Characteristics of Lightweight Foamed Soil Using In-situ Soil (현장발생토를 활용한 경량기포흔합토(LWFS)의 강도 및 변형특성)

  • Yoon Gil-Lim;You Seung-Kyong
    • Journal of the Korean Geotechnical Society
    • /
    • v.20 no.9
    • /
    • pp.125-131
    • /
    • 2004
  • A series of unconfined compression tests were carried out firstly to investigate mechanical behaviors of Lightweight Foamed Soil (LWFS) which is composed of dredged soils, cement and air foam. And secondly, to compare the difference of mechanical characteristic of LWFS with previous research conclusions (Yoon & Kim,2004) by using different dredged soils sampled at Joong-Ma in Gwangyang harbor area. Based on numberous laboratory experiments, it was found that deformation coefficient $(E_{50})$ of LWFS increases with increasing cement contents but decreases with increasing initial water contents of dredged soils. Appropriate regression formula (normalizing factor scheme) which considers relationship between LWFS composing elements, initial water contents of dredged soils, cement, air foam, and uniaxial compression strength or LWFS is proposed for practical applications. Finally, it was clear that, to apply LWFS method to practical projects, certain laboratory test would be necessary to take considerations of soil locality because mechanical charac-teristics of LWFS were surely dependent upon their sampled locations and properties.

Shear Strength Characteristics of Weathered Granite Soil below the Freezing Point (동결온도 조건에서의 화강풍화토 전단강도 특성에 관한 연구)

  • Lee, Joonyong;Choi, Changho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.14 no.7
    • /
    • pp.19-29
    • /
    • 2013
  • Analysis via classical soil mechanics theory is either ineffective or inappropriate for fully describing stress distribution or failure conditions in cold regions, since mechanical properties of soils in cold regions are different from those reported in the classical soil mechanics theory. Therefore, collecting and analyzing technical data, and systematic and specialized research for cold regions are required for design and construction of the structure in cold regions. Freezing and thawing repeat in active layer of permafrost region, and a loading condition affecting the structure changes. Therefore, the reliable analysis of mechanical properties of frozen soils according to various conditions is prerequisite for design and construction of the structure in cold regions, since mechanical properties of frozen soils are sensitive to temperature condition, water content, grain size, relative density, and loading rate. In this research, the direct shear apparatus which operates at 30 degrees below zero and large-scaled low temperature chamber are used for evaluating shear strength characteristics of frozen soils. Weathered granite soil is used to analyzed the shear strength characteristics with varying freezing temperature condition, vertical confining pressure, relative density, and water content. This research shows that the shear strength of weathered granite soil is sensitively affected by various conditions such as freezing temperature conditions, normal stresses, relative densities, and water contents.