• Title/Summary/Keyword: Soil layer

Search Result 1,802, Processing Time 0.026 seconds

Environmental Characteristics of Habitats of Iris odaesanensis Y.N.Lee (노랑무늬붓꽃(Iris odaesanensis Y.N.Lee) 자생지의 환경특성)

  • Cheon, Kyeong-Sik;Han, Jun-Soo;Seo, Won-Bok;Kim, Kyung-Ah;Yoo, Ki-Oug
    • Journal of Environmental Science International
    • /
    • v.19 no.11
    • /
    • pp.1337-1353
    • /
    • 2010
  • This study intended to investigate environmental factors including soil and vegetation in order to understand the environmental and ecological characteristics of 12 different habitats of Iris odaesanensis. These habitats, according to investigations, are mostly located at elevation of 280 m to 1,555 m with angles of inclination ranging from 2 degree to 30 degrees. A total of 273 vascular plants are identified in 23 quadrates of 12 habitats. Dominant species of woody plants in 12 habitats are represented as Quercus mongolica in the tree layer (T1) and the subtree (T2) layer, and Lespedeza maximowiczii, Lindera obtusiloba, Rhododendron schlippenbachii in the shrub (S) layer. The importance value of Iris odaesanensis is 9.65%, as regards the herbaceous layer, and 6 highly ranked species such as Carex siderosticta (3.92%), Meehania urticifolia (2.67%), Spodiopogon cotulifer (2.58%), Aconitum pseudolaeve (2.51%), Carex bostrychostigma (2.28%) and Disporum smilacinum (2.09%) are considered to be an affinity with Iris odaesanensis in their habitats. The degree of their average species diversity is 1.32, and that of dominance and evenness are 0.08 and 0.89, respectively. The type of soil is sandy loam and loam, and the average field capacity of soil is 28.31%. Their average organic matter is 16.71%, soil pH 5.29, and available phosphorus is 9.29%. Correlation coefficients analysis based on environmental factors, vegetation and soil analysis shows that the coverage of Iris odaesanensis is correlated with pH and dominance, and species richness is positive related with species diversity.

Evaluation of Nitrogen Mineralization and Nitrification in Soil Incorporated with Wine Sludge for Pepper (시설고추 재배 시 포도주부산물의 토양의 질산화에 미치는 영향)

  • Myong Suk Shin;Joung Du Shin;Hee Chun;Yong Du Kwon;Jong Sun Park
    • Journal of Bio-Environment Control
    • /
    • v.10 no.4
    • /
    • pp.219-224
    • /
    • 2001
  • This experiment was conducted to evaluate net mineralization and nitrification in rain shelter soil incorporated with wine sludge. Net mineralization and nitrification rates varied among treatments during pepper growing periods. In general, net mineralization increased up to 90 days after transplanting before its decrease during the rest growing periods. Maximum net mineralization and nitrification in upper 0-15 cm layer soil were observed in T4 at 90 days after transplanting. The greatest amount of mineralization in upper layer soil was 272.5 mg.kg$^{-1}$ at 30 days in the control and 843.3 mg.kg$^{-1}$ at 90 days after transplanting in T4. Overall, both net mineralization and net nitrification were greater in the upper layer soil than in the lower 15-30 cm layer soil.

  • PDF

Syntaxonomy and Soil Condition of Mt. Nam nature park (남산자연공원의 식물군락분류와 토양환경)

  • 이호준;전영문;정흥락;길지현;홍문표;김용옥;장일도
    • The Korean Journal of Ecology
    • /
    • v.21 no.5_3
    • /
    • pp.633-648
    • /
    • 1998
  • The forest vegetation of Mt. Nam Nature Park was investigated according to the phytosociological method. The vegetation in this study area was classified into 5 communities Quercus mongolica (Acer pseudo-sieboldianum subcommunity, Prunus sargentii subcommunity), P. sargentii, Pinus densiflora (Q. mongolica subcommunity, Stephanandra incisa subcommunity) and 5 afforestations Robinia pseudo-acacia, Populus tomentoglandulosa, P. koraiensis, P. rigida, Metasequoia glyptostroboides. Generally, were P. densiflora forest at the Southern slope and Q. mongolica forest at Northern slope dominant species from the top zone standing in Namsan tower. The dominance sequences on each stratum determined by the R-NCD (Relative net Contribution Degree) showed Q. mongolica and P. densiflora in tree-1 layer, Styrax japonica and Corbus alnifolia in tree-2 layer, S. incisa, S. japonica and rhododendron schlipenbachii in shrub layer, and Oplismenus undulatifolius, Eupatorium rugosum, Parthenocissus tricuspidata and Disporum smilacinum in herb layer. The soil was analyzed to investigate the soil conditions and fertility. The pHs of soil collected in each sites appeared strongly acidic with the range of 4.34 to 5.01 each community and especially, was the lowest value 4.34 in P. rigida afforestation. And Q. mongolica-P. sargentii subcommunity was distributed at the area with relative mesic conditions and high organic matters. Nitrogen was highest at P. sargentii community, phosphate at P. densiflora-S. incisa subcommunity, calcium, potasium and magnesium of exchangeble cation at R. pseudo-acacia afforestation. Especially, the level of calcium in R. pseudo-acacia afforestation, P. koraiensis afforestation and P. densiflora community was shown the highest (0.38-1.48 mg/100g) compared to other communities, because of the influence of lime fertilization used to improve acidic soil.

  • PDF

Reinforcement effect of micropile and bearing characteristics of micropiled raft according to the cohesion of soil and stiffness of pile

  • KangIL Lee;MuYeun Kim;TaeHyun Hwang
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.511-525
    • /
    • 2024
  • Micropiled raft has been used to support the existing and new structures or to provide the seismic reinforcement of foundation systems. Recently, research on micropile or micropiled raft has been actively conducted as the usage of micropile has increased, and the reinforcement effect of pile for the raft, the pile installation methods, and methods for calculating the bearing capacity of micropiled raft have been proposed. In addition, existing research results show that the behavior of this foundation system is different depending on the pile conditions and can be greatly influenced by the characteristics of the upper or lower ground depending on the conditions of pile. In other words, considering that the micropile is a friction pile, it can be predicted that the reinforcing effect of micropile for the raft and the bearing capacity of micropiled raft may depend on the cohesion of upper soil layer depending on the pile conditions. However, existing studies have limitations in that they were conducted without taking this into account. However, existing studies have limitations as they have been conducted without considering these characteristics. Accordingly, this study investigated the reinforcing effect of micropile and the bearing characteristics of micropiled raft by varying the cohesion of upper soil layer and the stiffness of pile which affect the behavior of micropiled raft. In this results, the reinforcing effect of micropile on the raft also increased as the cohesion of soil layer increased, but the reinforcing effect of pile was more effective in ground conditions with decreased the cohesion. In addition, the relationship between the axial stiffness of micropile and the bearing capacity of micropiled raft was found to be a logarithmic linear relationship. It was found that the reinforcing effect of micropile can increase the bearing capacity of raft by 1.33~ 3.72 times depending on the cohesion of soil layer and the rigidity of pile.

Evaluation of extension in service life and layer thickness reduction of stabilized flexible pavement

  • Nagrale, Prashant P.;Patil, Atulya
    • Advances in Computational Design
    • /
    • v.3 no.2
    • /
    • pp.201-212
    • /
    • 2018
  • Decrease in availability of suitable subbase and base course materials for highway construction leads to a search for economic method of converting locally available troublesome soil to suitable one for highway construction. Present study insights on evaluation of benefits of stabilization of subgrade soils in term of extension in service life (TBR) and layer thickness reduction (LTR). Laboratory investigation consisting of Atterberg limit, Compaction, California Bearing Ratio, unconfined compressive strength and triaxial shear strength tests were carried out on two types of soil for varying percentages of stabilizers. Vertical compressive strains at the top of unstabilized and stabilized subgrade soils were found out by elastoplastic finite element analysis using commercial software ANSYS. The values of vertical compressive strains at the top of unstabilized and stabilized subgrade, were further used to estimate layer thickness reduction or extension in service life of the pavement due to stabilization. Finite element modeling of the flexible pavement layered structure provides modern technology and sophisticated characterization of materials that can be accommodated in the analysis and enhances the reliability for the prediction of pavement response for improved design methodology. If the pavement section is kept same for unstabilized and stabilized subgrade soils, pavement resting on lime, fly ash and fiber stabilized subgrade soil B will have service life 2.84, 1.84 and 1.67 times than that of unstabilized pavement respectively. The flexible pavement resting on stabilized subgrade is beneficial in reducing the construction material. Actual savings would depend on the option exercised by the designer for reducing the thickness of an individual layer.

Application of Enzymatic Activity and Arsenic Respiratory Gene Quantification to Evaluate the Ecological Functional State of Stabilized Soils Nearby Closed Mines (안정화 처리된 폐광산 토양의 생태기능상태 평가를 위한 효소활성도 및 비소호흡유전자의 적용)

  • Park, Jae Eun;Lee, Byung-Tae;Lee, Sang Woo;Kim, Soon-Oh;Son, Ahjeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.39 no.5
    • /
    • pp.265-276
    • /
    • 2017
  • Heavy metals leaching from closed mines have been causing severe environmental problems in nearby soil ecosystems. Mine reclamation in Korea has been recently implemented based on the heavy metal immobilization (a.k.a., stabilization). Since the immobilization temporarily fixes the heavy metals to the soil matrix, the potential risk of heavy metal leaching still exists. Therefore the appropriate monitoring and the related policies are required to safeguard the soils, where all the cultivations occur. The current monitoring methods are based on either heavy metal concentration or simple toxicity test. Those methods, however, are fragmented and hence it is difficult to evaluate the site in an integrated manner. In this study, as the integrated approach, ecological functional state evaluation with a multivariate statistical tool was employed targeting physiochemical soil properties, heavy metal concentrations, microbial enzymatic activity, and arsenic respiratory reductase gene quantity. Total 60 soil samples obtained from three mines (Pungjeong, Jeomdong, Seosung) were analyzed. As a result, the stabilized layer soil and lower layer soil have shown the similar pattern in Pungjeong mine. In contrast, Jeomdong and Seosung mine have shown the similarity between the stabilized layer soil and the cover layer soil, indicating the possible contamination of the cover layer soil.

Effect of Solarization for Control of Root-Knot Nematode (Meloidogyne spp.) (태양열을 이용한 뿌리혹선충 (Meloidogyne spp.) 방제효과)

  • 김지인;한상찬
    • Korean journal of applied entomology
    • /
    • v.27 no.1
    • /
    • pp.1-5
    • /
    • 1988
  • This study was carried out to find out the possibility of suppressing the root-knot nematodes (Meloidogyne spp.) of vegetable crops in vinyl house by soil solarization between crop seasons at Suweon in August, 1986. Soils in vinyl house were sterilized by polyethylene film of 0.03 mm thick with and without inner tunnel within a house(single and double layer solarization), and soil temperatures and nematode densities at 5, 15 and 30cm soil depth were recorded. Rootknot nematodes in soil contained in a vinyl bag were completely killed within 48hr at $40^{\circ}C$ in an incubator. With double layer treatment, the highest temperatures were $48.7^{\circ}C$ at 15cm and $45.2^{\circ}C$ at 30cm soil depth when outdoor temperature was $30^{\circ}C$, and the lethal temperature above $40^{\circ}C$ was recorded for 17 days with 7hr per day at 5cm soil depth from Aug 1 to Aug 31. Due to the increased temperature, root-knot nematode densitiy was suprressed 96,74 and 54% with sigle layer solarization and 100,99 and 98% with double layer solarization at 5,15 and 30cm soil depth, respectively. It is concluded that double layer solarization during hot summer will provide a sufficient level of suppresson on root-knot nematodes remnant in the soil of vegetable crops in vinyl house.

  • PDF

Seismic vulnerability of reinforced concrete building structures founded on an XPS layer

  • Koren, David;Kilar, Vojko
    • Earthquakes and Structures
    • /
    • v.10 no.4
    • /
    • pp.939-963
    • /
    • 2016
  • According to the new directives about the rational and efficient use of energy, thermal bridges in buildings have to be avoided, and the thermal insulation (TI) layer should run without interruptions all around the building - even under its foundations. The paper deals with the seismic response of multi-storeyed reinforced concrete (RC) frame building structures founded on an extruded polystyrene (XPS) layer placed beneath the foundation slab. The purpose of the paper is to elucidate the problem of buildings founded on a TI layer from the seismic resistance point of view, to assess the seismic behaviour of such buildings, and to search for the critical parameters which can affect the structural and XPS layer response. Nonlinear dynamic and static analyses were performed, and the seismic response of fixed-base (FB) and thermally insulated (TI) variants of nonlinear RC building models were compared. Soil-structure interaction was also taken into account for different types of soil. The results showed that the use of a TI layer beneath the foundation slab of a superstructure generally induces a higher peak response compared to that of a corresponding system without TI beneath the foundation slab. In the case of stiff structures located on firm soil, amplification of the response might be substantial and could result in exceedance of the superstructure's moment-rotation plastic hinge capacities or allowable lateral roof and interstorey drift displacements. In the case of heavier, slenderer, and higher buildings subjected to stronger seismic excitations, the overall response is governed by the rocking mode of oscillation, and as a consequence the compressive strength of the XPS could be insufficient. On the other hand, in the case of low-rise and light-weight buildings, the friction capacity between the layers of the applied TI foundation set might be exceeded so that sliding could occur.

Vegetation Structure and Soil Condition of Acer okamotoanum Communities in Ulleung Island (울릉도 우산고로쇠나무 군락의 식생구조와 토양환경)

  • Kwon, Su-Duck;Kim, Jong-Kab;Moon, Hyun-Shik
    • Journal of agriculture & life science
    • /
    • v.44 no.5
    • /
    • pp.15-22
    • /
    • 2010
  • Vegetation structure and soil condition were analyzed to provide information for effective management of Acer okamotoanum community. Importance value of A. okamotoanum in upper layer was highest as 120.7, and that of Camellia japonica in middle and lower layer was highest as 61.8 and 15.7, while those of A. okamotoanum were 37.5 and 2.6, respectively. Taxus cuspidata var. latifolia which was designated as vulnerable species by Korea National Arboretum began its existence in lower layer. Species diversity and evenness were 0.674 and 0.706 in upper layer, 0.947 and 0.805 in middle layer, and 1.312 and 0.938 in lower layer, respectively. Soil pH of A. okamotoanum community was 5.79. The contents of organic matter, total N, and available $P_2O_5$ were 7.2%, 0.33%, and 51.1ppm, respectively.

Ecological Characteristics of Abies koreana Forest on Seseok in Mt. Jiri (지리산 세석지역 구상나무 임분의 생태적 특성)

  • Cho, Min-Gi;Chung, Jae-Min;Kim, Tae-Woon;Kim, Chung-Yeol;Noh, Il;Moon, Hyun-Shik
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.379-388
    • /
    • 2015
  • The purpose of the this study was to provide basic data on reasonable management for Abies koreana in Mt. Jiri through analysis the ecological characteristics of Abies koreana forests on Seseok. Due to low soil pH (4.26), high organic matter (10.5%) and total N (0.32%), the soil properties of A. koreana forest on Seseok are different from those of other forest soil in Korea. According to the result of importance value analysis, A. koreana (70.5) for tree layer, A. koreana (37.6) and Rhododendron schlippenbachii (20.8) for subtree layer and A. koreana (12.6), Sasa borealis (11.5) and Acer pseudosieboldianum (11.2) for shrub layer were high, respectively. The species diversity of Shannon was 0.425 for tree layer, 0.869 for subtree layer and 1.320 for shrub layer. Evenness and dominance for all layers ranged from 0.365 to 0.894 and 0.187 to 0.635, respectively. Height growth according to DBH of A. koreana on Seseok was relative high. Annual mean tree ring growth of A. koreana showed up 1.372, 1.557 and 1.483 mm/yr for small, middle and large diameter tree, respectively. Considering the importance value, distribution of seedling, height growth and ring growth, A. koreana forest on Seseok in Mt. Jiri will be maintained as the major population from now on.