• 제목/요약/키워드: Soil input data

검색결과 310건 처리시간 0.023초

흙토람 데이터베이스를 활용한 작물 모델의 토양입력자료 생성 (Preparation of Soil Input Files to a Crop Model Using the Korean Soil Information System)

  • 유병현;김광수
    • 한국농림기상학회지
    • /
    • 제19권3호
    • /
    • pp.174-179
    • /
    • 2017
  • 토양 변수는 작물 모형을 통한 기후변화 시나리오 조건에서의 작황 예측에 있어 중요한 환경적 요소이다. 토양 환경 정보 시스템 (Korean Soil Information System; KSIS)에서는 390 개의 토양통에 대한 자세한 정보를 제공하고 있다. 그러나, 이러한 토양 정보는 HTML (Hyper Text Markup Language) 문서 형식으로 제공되고 있어 작물 모형용 토양입력 자료로 변환하는 데에 어려움이 있다. 이에 따라 KSIS의 토양정보를 기반으로 작물모델의 토양 입력자료를 생산하는 도구인 Korean Soil Information System Processing Tool (KSISPT) 를 개발하였다. 이 도구는 객체 지향 프로그래밍 언어인 JAVA로 작성되었으며 여러 개의 모듈로 구성되었다. 이 모듈들을 통해 각각 KSIS 웹 페이지 문서 분석, 토양 자료 저장, 추가 변수 생성, 토양 입력자료 출력 등의 기능이 구현되었다. 각 토양통의 특성을 고려한 총 940여개의 토양 입력 자료가 생성되었다. 이 토양 자료를 KSIS에서 제공하는 30m 해상도의 토양통 공간적 분포 지도와 함께 활용된다면, 미래 기후 조건에서 작물 생산성의 시공간적 분석이 용이해지고 이를 기반으로 기후 변화 적응 대책수립에 도움을 줄 수 있을 것이다.

Probabilistic Approach on Railway Infrastructure Stability and Settlement Analysis

  • Lee, Sangho
    • International Journal of Railway
    • /
    • 제6권2호
    • /
    • pp.45-52
    • /
    • 2013
  • Railway construction needs vast soil investigation for its infrastructure foundation designs along the planned railway path to identify the design parameters for stability and serviceability checks. The soil investigation data are usually classified and grouped to decide design input parameters per each construction section and budget estimates. Deterministic design method which most civil engineer and practitioner are familiar with has a clear limitation in construction/maintenance budget control, and occasionally produced overdesigned or unsafe design problems. Instead of using a batch type analysis with predetermined input parameters, data population collected from site soil investigation and design load condition can be statistically estimated for the mean and variance to present the feature of data distribution and optimized with a best fitting probability function. Probabilistic approach using entire feature of design input data enables to predict the worst, best and most probable cases based on identified ranges of soil and load data, which will help railway designer select construction method to save the time and cost. This paper introduces two Monte Carlo simulations actually applied on estimation of retaining wall external stability and long term settlement of organic soil in soil investigation area for a recent high speed railway project.

Sentinel-1A/B SAR와 토양수분자료동화기법을 이용한 고해상도 토양수분 산정 (Estimation of High-Resolution Soil Moisture Using Sentinel-1A/B SAR and Soil Moisture Data Assimilation Scheme)

  • 김상우;이태화;천범석;정영훈;장원석;서찬양;신용철
    • 한국농공학회논문집
    • /
    • 제62권6호
    • /
    • pp.11-20
    • /
    • 2020
  • We estimated the spatio-temporally distributed soil moisture using Sentinel-1A/B SAR (Synthetic Aperture Radar) sensor images and soil moisture data assimilation technique in South Korea. Soil moisture data assimilation technique can extract the hydraulic parameters of soils using observed soil moisture and GA (Genetic Algorithm). The SWAP (Soil Water Atmosphere Plant) model associated with a soil moisture assimilation technique simulates the soil moisture using the soil hydraulic parameters and meteorological data as input data. The soil moisture based on Sentinel-1A/B was validated and evaluated using the pearson correlation and RMSE (Root Mean Square Error) analysis between estimated soil moisture and TDR soil moisture. The soil moisture data assimilation technique derived the soil hydraulic parameters using Sentinel-1A/B based soil moisture images, ASOS (Automated Synoptic Observing System) weather data and TRMM (Tropical Rainfall Measuring Mission)/GPM (Global Precipitation Measurement) rainfall data. The derived soil hydrological parameters as the input data to SWAP were used to simulate the daily soil moisture values at the spatial domain from 2001 to 2018 using the TRMM/GPM satellite rainfall data. Overall, the simulated soil moisture estimates matched well with the TDR measurements and Sentinel-1A/B based soil moisture under various land surface conditions (bare soil, crop, forest, and urban).

강제진동시험자료를 사용한 지반의 강성계수 추정 (Identification of Soil Stiffness Using Forced Vibration Test Data)

  • 최준성;이종세;김동수;이진선
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 춘계 학술발표회 논문집
    • /
    • pp.101-108
    • /
    • 2002
  • This paper presents an input and system identification technique for a free-field system using forced vibration data. Identification is carried out on geotechnical experiment site at Yong-jong Island where Inchon International Airport being constructed. The identified quantities are the input load as well as the shear moduli of the free-field soil regions. The dynamic response analysis on the free-field system is carried out using the finite element method incorporating the infinite element formulation fur the unbounded layered soil medium. The criterion function for the parameter estimation is constructed using the frequency response amplitude ratios of the dynamic responses measured at several points of the free-field, so that the information on the input loading may be excluded. The constrained steepest descent method is employed to obtain the revised parameters. The simulated dynamic responses using the identified parameters and input load show excellent agreements with the measured responses.

  • PDF

다중선형 회귀모형과 천리안 지면온도를 활용한 토양수분 산정 연구 (Estimation of Soil Moisture Using Multiple Linear Regression Model and COMS Land Surface Temperature Data)

  • 이용관;정충길;조영현;김성준
    • 한국농공학회논문집
    • /
    • 제59권1호
    • /
    • pp.11-20
    • /
    • 2017
  • This study is to estimate the spatial soil moisture using multiple linear regression model (MLRM) and 15 minutes interval Land Surface Temperature (LST) data of Communication, Ocean and Meteorological Satellite (COMS). For the modeling, the input data of COMS LST, Terra MODIS Normalized Difference Vegetation Index (NDVI), daily rainfall and sunshine hour were considered and prepared. Using the observed soil moisture data at 9 stations of Automated Agriculture Observing System (AAOS) from January 2013 to May 2015, the MLRMs were developed by twelve scenarios of input components combination. The model results showed that the correlation between observed and modelled soil moisture increased when using antecedent rainfalls before the soil moisture simulation day. In addition, the correlation increased more when the model coefficients were evaluated by seasonal base. This was from the reverse correlation between MODIS NDVI and soil moisture in spring and autumn season.

Nonlinear numerical analyses of a pile-soil system under sinusoidal bedrock loadings verifying centrifuge model test results

  • Kim, Yong-Seok;Choi, Jung-In
    • Geomechanics and Engineering
    • /
    • 제12권2호
    • /
    • pp.239-255
    • /
    • 2017
  • Various centrifuge model tests on the pile foundations were performed to investigate fundamental characteristics of a pile-soil-foundation system recently, but it is hard to find numerical analysis results of a pile foundation system considering the nonlinear behavior of soil layers due to the dynamic excitations. Numerical analyses for a pile-soil system were carried out to verify the experimental results of centrifuge model tests. Centrifuge model tests were performed at the laboratory applying 1.5 Hz sinusoidal base input motions, and nonlinear numerical analyses were performed utilizing a finite element program of P3DASS in the frequency domain and applying the same input motions with the intensities of 0.05 g~0.38 g. Nonlinear soil properties of soil elements were defined by Ramberg-Osgood soil model for the nonlinear dynamic analyses. Nonlinear numerical analyses with the P3DASS program were helpful to predict the trend of experimental responses of a centrifuge model efficiently, even though there were some difficulties in processing analytical results and to find out unintended deficits in measured experimental data. Also nonlinear soil properties of elements in the system can be estimated adequately using an analytical program to compare them with experimental results.

층상지반에 대한 액상화 평가방법 및 분석 (Analysis and Evaluation of the Liquefaction on Layered Soil)

  • 이상훈;유광훈
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.28-35
    • /
    • 2001
  • Liquefaction potential on the specific site of nuclear power plant is analyzed and reviewed. The layered site fur this study consists of silt and sand. Based on the limited available soil data, maximum shear strength at critical locations using Seed & Idriss method and computer program SHAKE is calculated, and liquefaction potential is reviewed. Seismic input motion used fur the assessment of liquefaction is the artificial time history compatible with the US NRC regulatory Guider .60. Assessment results of the liquefaction are validated by analyzing to the other typical soil fecundations which can show the effects of foundation depth and soil data.

  • PDF

Seismic response of soil-structure interaction using the support vector regression

  • Mirhosseini, Ramin Tabatabaei
    • Structural Engineering and Mechanics
    • /
    • 제63권1호
    • /
    • pp.115-124
    • /
    • 2017
  • In this paper, a different technique to predict the effects of soil-structure interaction (SSI) on seismic response of building systems is investigated. The technique use a machine learning algorithm called Support Vector Regression (SVR) with technical and analytical results as input features. Normally, the effects of SSI on seismic response of existing building systems can be identified by different types of large data sets. Therefore, predicting and estimating the seismic response of building is a difficult task. It is possible to approximate a real valued function of the seismic response and make accurate investing choices regarding the design of building system and reduce the risk involved, by giving the right experimental and/or numerical data to a machine learning regression, such as SVR. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The seismic response of both single-degree-of-freedom system and six-storey RC frame which can be represent of a broad range of existing structures, is estimated using proposed SVR model, while allowing flexibility of the soil-foundation system and SSI effects. The results show that the performance of the technique can be predicted by reducing the number of real data input features. Further, performance enhancement was achieved by optimizing the RBF kernel and SVR parameters through grid search.

농업 소유역의 토양유실량 예측을 위한 RUSLE의 적용 (Application of RUSLE to Estimate Annual Soil Loss from Small Agricultural Watersheds)

  • 최중대;양재의;최병용;최경진
    • 한국농공학회:학술대회논문집
    • /
    • 한국농공학회 1999년도 Proceedings of the 1999 Annual Conference The Korean Society of Agricutural Engineers
    • /
    • pp.771-776
    • /
    • 1999
  • RUSLE was applied to estimate annual soil loss from two small agricultural watersheds in Kangwon-do, Korea. GIS input parameters were prepared by using DEMs and soil maps prepared by the NGIS project and Rural Development Adminstration, respoctively. RUSLE parameters were prepared based on existing data and equations. Estimated annual soil loss was graphically presented to easily visualize the large soil loss area. Uplands and vineyards proved to be the two greatest sources for soil erosion. It was suggested to develop effective management practices to reduce the soil erosion from uplands and vineyards.

  • PDF

물리탐사자료의 GIS 복합처리에 의한 천부지질구조 해석 (Interpretation of shallow geological structure by applying GIS to geophysical data)

  • 송성호;정형재
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1998년도 공동 심포지엄 및 추계학술발표회
    • /
    • pp.123-126
    • /
    • 1998
  • We have conducted surface electrical resistivity surveys along with the electrical logging at Bookil-Myun, Chungwon-Goon, Choongchungbuk-Do to determine the depths of basement and water table, and for the purpose of preparing the basic input data for hydrogeologic model combined with GIS. A twenty lines of dipole-dipole array survey and a twenty-five stations of resistivity sounding were performed and ten holes were employed for electrical logging to cross check the surface data. A combined interpretation gave the quantitative information of the shallow geologic structure over the area and we constructed layers using the grid analysis of Arc/info. The constructed layers were turned out to be similar to the geologic structure confirmed from the drilling data and we concluded that the methodology adopted in this study would be applicable to hydrogeologic model setup as a tool of providing the basic input data.

  • PDF