• Title/Summary/Keyword: Soil improvement material

Search Result 156, Processing Time 0.028 seconds

An Empirical Study on the Improvement of In Situ Soil Remediation Using Plasma Blasting, Pneumatic Fracturing and Vacuum Suction (플라즈마 블라스팅, 공압파쇄, 진공추출이 활용된 지중 토양정화공법의 정화 개선 효과에 대한 실증연구)

  • Jae-Yong Song;Geun-Chun Lee;Cha-Won Kang;Eun-Sup Kim;Hyun-Shic Jang;Bo-An Jang;Yu-Chul Park
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.85-103
    • /
    • 2023
  • The in-situ remediation of a solidified stratum containing a large amount of fine-texture material like clay or organic matter in contaminated soil faces limitations such as increased remediation cost resulting from decreased purification efficiency. Even if the soil conditions are good, remediation generally requires a long time to complete because of non-uniform soil properties and low permeability. This study assessed the remediation effect and evaluated the field applicability of a methodology that combines pneumatic fracturing, vacuum extraction, and plasma blasting (the PPV method) to improve the limitations facing existing underground remediation methods. For comparison, underground remediation was performed over 80 days using the experimental PPV method and chemical oxidation (the control method). The control group showed no decrease in the degree of contamination due to the poor delivery of the soil remediation agent, whereas the PPV method clearly reduced the degree of contamination during the remediation period. Remediation effect, as assessed by the reduction of the highest TPH (Total Petroleum Hydrocarbons) concentration by distance from the injection well, was uncleared in the control group, whereas the PPV method showed a remediation effect of 62.6% within a 1 m radius of the injection well radius, 90.1% within 1.1~2.0 m, and 92.1% within 2.1~3.0 m. When evaluating the remediation efficiency by considering the average rate of TPH concentration reduction by distance from the injection well, the control group was not clear; in contrast, the PPV method showed 53.6% remediation effect within 1 m of the injection well, 82.4% within 1.1~2.0 m, and 68.7% within 2.1~3.0 m. Both ways of considering purification efficiency (based on changes in TPH maximum and average contamination concentration) found the PPV method to increase the remediation effect by 149.0~184.8% compared with the control group; its average increase in remediation effect was ~167%. The time taken to reduce contamination by 80% of the initial concentration was evaluated by deriving a correlation equation through analysis of the TPH concentration: the PPV method could reduce the purification time by 184.4% compared with chemical oxidation. However, the present evaluation of a single site cannot be equally applied to all strata, so additional research is necessary to explore more clearly the proposed method's effect.

Ecosystem Structure and Improvement of Naturalness in Urban Area -In the Case of Kangseo-gu in Seoul- (도시생태계 현황파악 및 자연성 증진 방안 -서울시 강서구를 사례로-)

  • 이수동;이경재
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.32 no.3
    • /
    • pp.1-17
    • /
    • 2004
  • The focus of this study is the promotion of green area volumes and their naturalness, water circulation system, decline of entropy, creation of biological habitats and linkage of separated urban green space. Re-presentative urban biotope survey sites were categorized as urban biotope, semi-natural biotope, and natural forest. In the urban biotope, a residential biotope was constructed near the Han river and in mountain areas. The green-area ratio at the housing complex was about 25%. GVZ(Grunvolumenzahl) was 0.35m$^3$/m$^2$ at the 5∼10-story housing complex, and 1.53m$^3$/m$^2$ over the 11-story. As for the green-area structure of the housing complex, canopy layer, understory layer, and shrub layer were not differentiated and the green-area volume was not high enough. The green-area ratio of school areas as a public area biotope was 5∼20%. GVZ was 1.12m$^3$/m$^2$ at Myungduk High School, and 1.78m$^3$/m$^2$ at Jeonggok Elementary School. In order to convert the urban biotope into an ecological area, green areas around the buildings should be connected to urban buffer green areas, and multi-layer structures should be established with natural plant species. In the semi-natural biotope, neighbor parks were created park in the vicinity of the natural forests. GVZ was 0.28m$^3$/m$^2$, and plantation was established with single layer structure and was definitely insufficient for the area. The urban buffer green areas have been established in strip corridors with the width of 20∼123m. In those areas, GVZ was 0.16∼0.27m$^3$/m$^2$ and had a deficient canopy layer, understory layer, and shrub layer. Soil conditions were not favorable for tree growth. In the natural biotope, GVZ of the plantation was 1.03∼1.5m$^3$/m$^2$ but the high crown closure of this area reduces the chance of species change and succession. GVZ of natural forest was 2.53∼2.57m$^3$/m$^2$. It is desirable to plant diverse plants and the natural forest should be succeeded by broad-leaf deciduous tree species. To improve the value of biotope at Kangseo-Gu, building height needs to be limited to reduce the environmental deterioration in the city. In order to maintain the water circulation system, water-permeable material is recommened when the urban surface areas are paved. The establishment of a water circulation system will improve ground water levels, soil moisture, water quality, and habitats. In order to improve biological diversity, it is desirable to have multi-layer structures in urban green areas with native species.

Application of Electrokinetic Injection Method for Increasing Shear Strength of Low Permeable Soil (저투수성 지반의 전단강도 증가를 위한 동전기 주입 기법의 적용성)

  • Kim Soo-Sam;Han Sang-Jae;Kim Ki-Nyeon
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.5
    • /
    • pp.5-12
    • /
    • 2006
  • In this study a series of tests (bench scale test) are carried out for increasing the strength of clayey soil by EK-Injection method. In addition, the effects of strength increase in the treated sample are measured by operating the vane shear test device during 25 days at 5 days intervals in order to estimate the effect of ground improvement caused by diffusion. Also, the effects of strength increase in the treated sample are measured by operating the vane shear test device to estimate the effect by treatment durations (5, 10, 15, 20, 25). The test results show that the strength increase was developed approximately 2 to 7 times in comparison to initial shear strength, and outstanding strenfth increase was created as much as 7 times while injecting the sodium silicate and phosphoric acid in anolyte and catholyte. In addition, the measured shear strength with the influence of diffusion and reduction of water-content had a tendency to converge in constant value in proportion to elapsed time. As a result of this study, strength increment developed by the influence of EK-Injection and diffusion rather than the reduction of water-content was 1000% high on average. In case of changes of treatment duration, strength increment developed by the influence of treatment durations rather than the reduction of water-content was 3 to 4 times high on average.

Cultural Practices for Reducing Cold Wind Damage of Rice Plant in Eastern Coastal Area of Korea (동해안지대 도작의 냉조풍피해와 피해경감대책)

  • 이승필;김칠용
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.36 no.5
    • /
    • pp.407-428
    • /
    • 1991
  • The eastern coastal area having variability of climate is located within Taebaek mountain range and the east coast of Korea. It is therefore ease to cause the wind damages in paddy field during rice growing season. The wind damages to rice plant in this area were mainly caused by the Fohn wind (dry and hot wind) blowing over the Taebaek mountain range and the cold humid wind from the coast. The dry wind cause such as the white head, broken leaves, cut-leaves, dried leaves, shattering of grain, glume discolouration and lodging, On the other hand the cold humid wind derived from Ootsuku air mass in summer cause such symptom as the poor rice growth, degeneration of rachis brenches and poor ripening. To minimize the wind damages and utilize as a preparatory data for wind injury of rice in future, several experiments such as the selection of wind resistant variety to wind damage, determination of optimum transplanting date, improvement of fertilizer application methods, improvement of soils and effect of wind break net were carried out for 8 years from 1982 to 1989 in the eastern coastal area. The results obtained are summarized as follows. 1. According to available statisical data from Korean meteorological services (1954-1989) it is apperent that cold humid winds frequently cause damage to rice fields from August 10th to September 10th, it is therefore advisable to plan rice cultivation in such a way that the heading date should not be later than August 10th. 2. During the rice production season, two winds cause severe damage to the rice fields in eastern coastal area of Korea. One is the Fohn winds blowing over the Taebaek mountain range and the other is the cold humid wind form the coast. The frequency of occurrence of each wind was 25%. 3. To avoid damage caused by typhoon winds three different varieties of rice were planted at various areas. 4. In the eastern coastal area of Korea, the optimum ripening temperature for rice was about 22.2$^{\circ}C$ and the optimum heading date wad August 10th. The optimum transplanting time for the earily maturity variety was June 10th., medium maturity variety was May 20th and that of late maturity was May 10th by means of growing days degree (GDD) from transplanting date to heading date. 5.38% of this coastal area is sandy loamy soil while 28% is high humus soil. These soil types are very poor for rice cultivation. In this coastal area, the water table is high, the drainage is poor and the water temperature is low. The low water temperature makes it difficult for urea to dissolve, as a result rice growth was delayed, and the rice plant became sterile. But over application of urea resulted in blast disease in rice plants. It is therefore advise that Ammonium sulphate is used in this area instead of urea. 6. The low temperature of the soil inhibits activities of microorganism for phosphorus utilization so the rice plant could not easily absorb the phosphorus in the soil. Therefore phosphorus should be applied in splits from transplanting to panicle initiation rather than based application. 7. Wind damage was severe in the sandy loamy soil as compared to clay soils. With the application of silicate. compost and soil from mointain area. the sand loamy soil was improved for rice grain colour and ripening. 8. The use of wind break nets created a mocro-climate such as increased air. soil and water temperature as well as the reduction of wind velocity by 30%. This hastened rice growth, reduced white head and glume discolouration. improved rice quality and increased yield. 9. Two meter high wind break net was used around the rice experimental fields and the top of it. The material was polyethylene sheets. The optimum spacing was 0.5Cm x 0.5Cm. and that of setting up the wind break net was before panicle initiation. With this set up, the field was avoided off th cold humid wind and the Fohn. The yield in the treatment was 20% higher than the control. 10. After typhoon, paddy field was irrigated deeply and water was sprayed to reduce white head, glume discolouration, so rice yield was increased because of increasing ripening ratio and 1, 000 grain weight.

  • PDF

A Field Verification Study on the Effect of Filter Layers on Groundwater Level Drop Characteristics, Permeability, Optimum Yield and Well Efficiency in the Unconfined Aquifer Well for Riverbank Filtration Intake (강변여과수 취수를 위한 충적우물에서 필터층이 수위강하특성, 투수성, 적정양수량 및 우물효율에 미치는 영향에 대한 현장실증 연구)

  • Song, Jae-Yong;Lee, Sang-Moo;Kang, Byeong-Cheon;Lee, Geun-Chun;Jeong, Gyo-Cheol
    • The Journal of Engineering Geology
    • /
    • v.29 no.4
    • /
    • pp.509-529
    • /
    • 2019
  • This study performs to evaluate the role of filter material at alluvial well for intake of riverbank filtration and the applicability and improvement effect of dual filter well. To achieve this objective, dual filter intake well and single filter intake well were installed with different filter conditions at riverbank free surface aquifer in soil layer then we evaluated filter material condition, permeability, optimum yield and well efficiency according to yield in drawdown test. As a results, we assumed forming dual filter layer minimizes sudden speed changes at boundary between aquifer and filter layer by cushioning of groundwater flow. This suppresses warm current then intake groundwater efficiently, therefore it seems decreasing peripheral groundwater level changes in spite of higher intake water amount than single filter intake well. Furthermore, we confirmed by test, installing dual filter improves permeability, optimum yield and well efficiency. The result will be used by combining with former study to set up standard of design/construction of dual filter intake well at alluvial aquifer layer. Furthermore, we expect this result will be used to prove application effect of dual filter intake well compared to single filter one and radial collector well which are mainly applied on riverbank filtration.

A Study on the Reinforcement and Environmental Impact of LW Injection (LW주입에 의한 지반보강 및 환경영향성에 관한 연구)

  • Chun, Byungsik;Do, Jongnam;Sung, Hwadon;Lim, Jooheon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.7 no.6
    • /
    • pp.121-131
    • /
    • 2006
  • This study is performed to examine the ground reinforcement effect and the environmental impact of LW injection, which is widely used during the excavation of high-rise apartment buildings. In addition, it proved that by conducting field exploration and laboratory test the engineering ground reinforcement effect of LW injection in the ground has low coefficient of permeability. The environmentally friendly aspect was evaluated through an assessment of environmental impact. The results of laboratory test shows that LW coagulating material with SC type soil structure has significant improvement of uniaxial compressive strength, increasing by three times and the shear strength increasing by twice, coefficient of permeability decreasing six to seven times. And the result of environmental impact tests show that from 6 hour after where the pH increases until 7.96 to initially it diminished, it started and to 80 hour after it recovered a pH 7.25 initially with 7.30. The chemical composition analysis test result that unpolluted water and polluted water hydrogen ion concentration (pH) show that the unpolluted water pH 7.36, polluted water pH 7.85, which is inside the Ministry of Environment standard of drinking water (the pH 5.8~8.5). The assessment of environmental impact and chemical analysis test also demonstrate that the LW coagulating material is environmentally friendly. In the $Cr^{6+}$ and the salinity detection test, it was proven that the salinity is slight and the $Cr^{6+}$ is not detected.

  • PDF

Physico-Chemical Properties of Aggregate By-Products as Artificial Soil Materials (골재 부산물의 용토재 활용을 위한 특성 분석)

  • Yang, Su-Chan;Jung, Yeong-Sang;Kim, Dong-Wook;Shim, Gyu-Seop
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.40 no.5
    • /
    • pp.418-428
    • /
    • 2007
  • Physical and chemical properties of the aggregate by-products including sludge and crushed dust samples collected from the 21 private companies throughout the country were analyzed to evaluate possible usage of the by-products as artificial soil materials for plantation. The pH of the materials ranged from 8.0 to 11.0. The organic matter content was $2.85g\;kg^{-1}$, and the total nitrogen content and available phosphate content were low as 0.7 percents and $12.98mg\;kg^{-1}$, respectively. Exchangeable $Ca^{2+}$, $Mg^{2+}$, $K^+$, and $Na^+$ were 2.29, 0.47, 0.02 and $0.05cmol\;kg^{-1}$, respectively. Heavy metal contents were lower than the limits regulated by environmental law of Korea. Textural analysis showed that most of the materials were silt loam with low water holding capacity ranged from 0.67 to 7.41 percents, and with low hydraulic conductivity ranged from 0.4 to $2.8m\;s^{-1}$. Mineralogical analysis showed that the aggregate by product materials were mostly composed of silicate, alumina and ferric oxides except calcium oxide dominant materials derived from limestones. The primary minerals were quartz, feldspars and dolomites derived from granite and granitic gneiss materials. Some samples derived from limestone material showed calcite and graphite together with the above minerals. According to the result, it can be concluded that the materials could be used as the artificial soil material for plantation after proper improvement of the physico-chemical properties and fertility.

Studies on the Desalinization and Improvement of Physical-chemical Characteristics of Saline and Alkali Soils by CHP Treatment (CHP에 의(依)한 간척지(干拓地) 토양(土壤)의 제염(除鹽) 및 이화학성질개량(理化學性質改良)에 관(關)한 시험연구(試驗硏究))

  • Lee, S.H.;Oh, J.S.;Im, C.N.
    • Applied Biological Chemistry
    • /
    • v.8
    • /
    • pp.65-73
    • /
    • 1967
  • For the study of method for salt elimination aimed at reforming tidal land into normal paddy fields in a short period with reduction of periods requiring for elimination of saline, CHP (a kind of Ca-hum ate), a soil conditioner made of peat as a main material was tried. In the pot experiment, effect on elimination of salt, improvement of physical-chemical characteristics and rice cultivation test were studied. The results of these tests are as follows: 1, CHP treatment somewhat improves aggregation state with some effect on aggregation. 2. CHP treatment is remarkably effective in permeability which increases with 1.0 percent treatment by three times in percolation rate, and by 4.5 times in volume of leached water respectively. 3. With the increase of CHP amounts, salt was eliminated in short period. When 80% of the total Na was leached in 1.0% CHP-A treated pot, control pot begins permeable. 4. CEC and phosphorous absorption capacity are not influenced by CHP treatment. 5. Growing state of rice is greatly influenced by rainfalls. Growth of rice in tidal land however are almost similar to those in normal paddy fields with layer amounts of CHP treatment. With salt content in the soils, saline hazard and numbers of ineffective stems, amounts of unmatured grain are increased. 6. With the treatment of CHP yields of rough rice were increased. With 0.5% CHP treatment the yields were similar to those of the normal paddy fields. With 1.0% CHP-A treatment, the yields were increased by 15 times more than those of none treated soil and by 25 percent more than normal paddy soils.

  • PDF

A study of Improvement on the Road Drainage Poor Site (도로배수 취약구간의 개선방안에 대한 연구)

  • Lee, Man-Seok;Kim, Heung-Rae;Lee, Kyung-Ha;Kang, Min-Soo;Song, Min-Tae
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.125-131
    • /
    • 2011
  • This research aims to investigate the cause of the occurrence of a weak road drainage section scientifically and specifically through a site survey for a poorly drained section occurring due to rainfalls during road operation. This paper deeply reviewed the existing research results and current situation data on the poorly drained sections accumulated in Korea Expressway Corporation in order to investigate the cause of the occurrence of a weak road drainage section, and deeply verified and analyzed the weak sections for the road surface drainage facilities and the other road drainage facilities by visiting the expressway controlled by the 6 local headquarters and 33 branches of Korea Expressway Corporation. As a result of site surveys for the weak road drainage sections, i) in a road surface section, occurrence of ponding in the road shoulder pavement due to slope changes, bad collection of water in the collecting well at a median strip, shortage of road shoulder dike height, and inferior construction, etc. was analyzed to be the main cause of the occurrence of poorly drained sections, and ii) in a road neighborhood section, the occurrence of pavement height difference in a main road and shoulder section due to inferior ditches on a slope and the bad drain age at the inlet and outlet of a culvert due to soil deposits, debris, etc. were analyzed to be the main cause of the occurrence of weak sections. Proposed as a plan to improve the poorly drainage section of road were i)calculation of capacity through material changes at the ditch, enhancement of vertical sections and hydraulic analysis in terms of construction and other aspects, ii)derivation of a combined slope considering a slope and a vertical linearity and maintenance of proper distance between drainage structures in a vertical concave section in terms of geometrical structure, and iii)calculation of the drainage facility installation interval using a minutely rainfall intensity formula and a non-uniform flow analysis technique in terms of hydraulics and hydrologics and prompt removal of rainfalls from the road surface according to a linear drainage method.

Water and mass balance analysis for hydrological model development in paddy fields

  • Tasuku, KATO;Satoko, OMINO;Ryota, TSUCHIYA;Satomi, TABATA
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.238-238
    • /
    • 2015
  • There are demands for water environmental analysis of discharge processes in paddy fields, however, it is not fully understood in nutrients discharge process for watershed modeling. As hydrological processes both surface and ground water and agricultural water managements are so complex in paddy fields, the development of lowland paddy fields watershed model is more difficult than upland watershed model. In this research, the improvement of SWAT (Soil and Water Assessment Tool) model for a paddy watershed was conducted. First, modification of surface inundated process was developed in improved pot hole option. Those modification was evaluated by monitoring data. Second, the monitoring data in river and drainage channel in lowland paddy fields from 2012 to 2014 were analyzed to understand discharge characteristics. As a case study, Imbanuma basin, Japan, was chosen as typical land and water use in Asian countries. In this basin, lowland paddy fields are irrigated from river water using small pumps that were located in distribution within the watershed. Daily hydrological fluctuation was too complex to estimate. Then, to understand surface and ground water discharge characteristics in irrigation (Apr-Aug) and non-irrigation (Sep-Mar) period, the water and material balance analysis was conducted. The analysis was composed two parts, watershed and river channel blocks. As results of model simulation, output was satisfactory in NSE, but uncertainty was large. It would be coming from discharge process in return water. The river water and ground water in paddy fields were exchanged each other in 5.7% and 10.8% to river discharge in irrigation and non-irrigation periods, respectively. Through this exchange, nutrient loads were exchanged between river and paddy fields components. It suggested that discharge from paddy fields was not only responded to rainfall but dynamically related with river water table. In general, hydrological models is assumed that a discharge process is one way from watershed to river. However, in lowland paddy fields, discharge process is dynamically changed. This function of paddy fields showed that flood was mitigated and temporally held as storage in ground water. Then, it showed that water quality was changed in mitigated function in the water exchange process in lowland paddy fields. In future, it was expected that hydrological models for lowland paddy fields would be developed with this mitigation function.

  • PDF