• 제목/요약/키워드: Soil fungal community

검색결과 50건 처리시간 0.029초

충남 섬 지역 근권 토양의 수지상균근균 군집 구조 (Community Structure of Arbuscular Mycorrhizal Fungi in the Islands of Chungnam, Korea)

  • 이정윤;이은화;가강현;엄안흠
    • 한국균학회지
    • /
    • 제44권1호
    • /
    • pp.16-22
    • /
    • 2016
  • 본 연구에서는 충남 서해안에 분포하는 5개의 섬 지역(신진도, 마도, 대난지도, 원산도, 삽시도)과 육지 해안 지역인 무창포의 근권 토양내 수지상균근균 군집 구조의 차이점을 확인해보았다. 그 결과 충남 지역에서 국내 미기록종인 Acaulospora brasiliensis, Redeckera fulvum를 포함하여 14개 속 24종의 수지상균근균을 확인하였다. 또한 대부분의 섬 지역에서 Acaulospora 속이 우점하고 있음을 확인할 수 있었으며, 섬 지역의 근권에서는 육지 지역과는 다른 수지상균근균 군집 구조가 발달함을 보여주었다. 특히 섬 간의 수지상균근균 군집은 섬들 사이의 물리적 거리가 가까울수록 더 유사하게 발달하는 것을 확인하였다.

Veterinary antibiotic oxytetracycline's effect on the soil microbial community

  • Danilova, Natalia;Galitskaya, Polina;Selivanovskaya, Svetlana
    • Journal of Ecology and Environment
    • /
    • 제44권2호
    • /
    • pp.72-80
    • /
    • 2020
  • Background: Antibiotics are widely used to treat animals from infections. After fertilizing, antibacterials can remain in the soil while adversely affecting the soil microorganisms. The concentration of oxytetracycline (OTC) in the soil and its effect on the soil microbial community was assessed. To assess the impact of OTC on the soil microbial community, it was added to the soil at concentrations of 50, 150, and 300 mg kg-1 and incubated for 35 days. Results: The concentration of OTC added to the soil decreased from 150 to 7.6 mg kg-1 during 30 days of incubation, as revealed by LC-MS. The deviations from the control values in the level of substrate-induced respiration on the 5th day of the experiment were, on average, 26, 68, and 90%, with OTC concentrations at 50, 150, and 300 mg kg-1, respectively. In samples with 150 and 300 mg kg-1 of OTC, the number of bacteria from the 3rd to 14th day was 2-3 orders of magnitude lower than in the control. The addition of OTC did not affect the fungal counts in samples except on the 7th and 14th days for the 150 and 300 mg kg-1 contaminated samples. Genes tet(M) and tet(X) were found in samples containing 50, 150, and 300 mg kg-1 OTC, with no significant differences in the number of copies of tet(M) and tet(X) genes from the OTC concentration. Conclusions: Our results showed that even after a decrease in antibiotic availability, its influence on the soil microbial community remains.

Effects of transgenic watermelon with CGMMV resistance on the diversity of soil microbial communities using PLFA

  • Yi, Hoon-Bok;Kim, Chang-Gi
    • Animal cells and systems
    • /
    • 제14권3호
    • /
    • pp.225-236
    • /
    • 2010
  • We compared the composition of phospholipid fatty acids (PLFA) to assess the microbial community structure in the soil and rhizosphere community of non-transgenic watermelons and transgenic watermelons in Miryang farmlands in Korea during the spring and summer of 2005. The PLFA data were seasonally examined for the number of PLFA to determine whether there is any difference in the microbial community in soils from two types of watermelons, non-transgenic and transgenic. We identified 78 PLFAs from the rhizosphere samples of the two types of watermelons. We found eight different PLFAs for the type of plants and sixteen PLFAs for the interaction of plant type and season. The PLFA data were analyzed by analysis of variance separated by plant type (P<0.0085), season (P<0.0154), and the plant type${\times}$season interaction (P<0.1595). Non-parametric multidimensional scaling (NMS showed a small apparent difference but multi-response permutation procedures (MRPP) confirmed that there was no difference in microbial community structure for soils of both plant types. Conclusively, there was no significant adverse effect of transgenic watermelon on bacterial and fungal relative abundance as measured by PLFA. We could reject our hypothesis that there might be an adverse effect from transgenic watermelon with our statistical results. Therefore, we can suggest the use of this PLFA methodology to examine the adverse effects of transgenic plants on the soil microbial community.

Phialocephala lagerbergii: A New Record from Crop Field Soil in Korea

  • Adhikari, Mahesh;Kim, Sangwoo;Yadav, Dil Raj;Um, Yong Hyun;Kim, Hyung Seung;Lee, Hyang Burm;Lee, Youn Su
    • 한국균학회지
    • /
    • 제44권3호
    • /
    • pp.132-137
    • /
    • 2016
  • A unrecorded hyphomycete species of Phialocephala was isolated for the first time during the investigation of fungal community in the soil samples collected from different regions of Korea. The fungal isolate was identified as Phialocephala lagerbergii, based on the morphological characteristics and phylogenetic analysis of the ribosomal DNA sequence. In addition, cultural and micro-morphological features were described in detail.

Soil Microbial Community Assessment for the Rhizosphere Soil of Herbicide Resistant Genetically Modified Chinese Cabbage

  • Sohn, Soo-In;Oh, Young-Ju;Ahn, Byung-Ohg;Ryu, Tae-Hoon;Cho, Hyun-Suk;Park, Jong-Sug;Lee, Ki-Jong;Oh, Sung-Dug;Lee, Jang-Yong
    • 한국환경농학회지
    • /
    • 제31권1호
    • /
    • pp.52-59
    • /
    • 2012
  • BACKGROUND: Cultivation of genetically modified(GM) crops rapidly has increased in the global agricultural area. Among those, herbicide resistant GM crops are reported to have occupied 89.3 million hectares in 2010. However, cultivation of GM crops in the field evoked the concern of the possibility of gene transfer from transgenic plant into soil microorganisms. In our present study, we have assessed the effects of herbicide-resistant GM Chinese cabbage on the surrounding soil microbial community. METHODS AND RESULTS: The effects of a herbicide-resistant genetically modified (GM) Chinese cabbage on the soil microbial community in its field of growth were assessed using a conventional culture technique and also culture-independent molecular methods. Three replicate field plots were planted with a single GM and four non-GM Chinese cabbages (these included a non-GM counterpart). The soils around these plants were compared using colony counting, denaturing gradient gel electrophoresis and a species diversity index assessment during the growing periods. The bacterial, fungal and actinomycetes population densities of the GM Chinese cabbage soils were found to be within the range of those of the non-GM Chinese cabbage soils. The DGGE banding patterns of the GM and non-GM soils were also similar, suggesting that the bacterial community structures were stable within a given month and were unaffected by the presence of a GM plant. The similarities of the bacterial species diversity indices were consistent with this finding. CONCLUSION: These results indicate that soil microbial communities are unaffected by the cultivation of herbicide-resistant GM Chinese cabbage within the experimental time frame.

Effect of Organic Farming on Spore Diversity of Arbuscular Mycorrhizal Fungi and Glomalin in Soil

  • Lee, Ji-Eun;Eom, Ahn-Heum
    • Mycobiology
    • /
    • 제37권4호
    • /
    • pp.272-276
    • /
    • 2009
  • In this study, eight soil samples were collected from organic and conventional farms in a central area of South Korea. Spore communities of arbuscular mycorrhizal fungi (AMF) and glomalin, a glycoprotein produced by AMF, were analyzed. Spores of Glomus clarum, G. etunicatum, G. mosseae, G. sp., Acaulospora longula, A. spinosa, Gigaspora margarita, and Paraglomus occultum were identified at the study sites, based on morphological and molecular characteristics. While Acaulospora longula was the most dominant species in soils at organic farms, Paraglomus occultum was the most dominant species in soils at conventional farms. Species diversity and species number in AMF communities found in soils from organic farms were significantly higher than in soils from conventional farms. Glomalin was also extracted from soil samples collected at organic and conventional farms and was analyzed using both Bradford and enzyme-linked immunosorbent assays. The glomalin content in soils from organic farms was significantly higher than in soils from conventional farms. These results indicate that agricultural practices significantly affect AMF abundance and community structure.

Analysis of Fungal Communities on Ulleungdo and Dokdo Islands

  • Nam, Yoon-Jong;Kim, Hyun;Shin, Yong-Gyo;Lee, Jin-Hyung;Kim, Jong-Guk
    • 한국균학회소식:학술대회논문집
    • /
    • 한국균학회 2014년도 추계학술대회 및 정기총회
    • /
    • pp.50-50
    • /
    • 2014
  • In this study, we used pyrosequencing method to analysis of soil fungal communities on the Ulleungdo and Dokdo islands. 768 operational taxonomic units (OTUs) were analyzed from the Ulleungdo sample and 640 OTUs and 382 OTUs were analyzed from the Dongdo and Seodo samples, respectively. Compared to the species richness of Ulleungdo and the Dokdo sample, the Ulleungdo sample was higher than in the Dongdo and Seodo samples. Species diversity was much the same. The phylum Basidiomycota was dominant in the Ulleungdo sample, while the phylum Ascomycota was dominant in the Dongdo sample.

  • PDF

Arbuscular Mycorrhizal Fungal Communities in the Roots of Maize Lines Contrasting for Al Tolerance Grown in Limed and Non-Limed Brazilian Oxisoil

  • Gomes, Eliane A.;Oliveira, Christiane A.;Lana, Ubiraci G. P.;Noda, Roberto W.;Marriel, Ivanildo E.;de Souza, Francisco A.
    • Journal of Microbiology and Biotechnology
    • /
    • 제25권7호
    • /
    • pp.978-987
    • /
    • 2015
  • Aluminum (Al) toxicity is one of the greatest limitations to agriculture in acid soils, particularly in tropical regions. Arbuscular mycorrhizal fungi (AMF) can supply plants with nutrients and give protection against Al toxicity. The aim of this work was to evaluate the effects of soil liming (i.e., reducing Al saturation) on the AMF community composition and structure in the roots of maize lines contrasting for Al tolerance. To this end, we constructed four 18S rDNA cloning libraries from L3 (Al tolerant) and L22 (Al sensitive) maize lines grown in limed and non-limed soils. A total of 790 clones were sequenced, 69% belonging to the Glomeromycota phylum. The remaining sequences were from Ascomycota, which were more prominent in the limed soil, mainly in the L3 line. The most abundant AM fungal clones were related to the family Glomeraceae represented by the genera uncultured Glomus followed by Rhizophagus and Funneliformis. However, the most abundant operational taxonomic units with 27% of the Glomeromycota clones was affiliated to genus Racocetra. This genus was present in all the four libraries, but it was predominant in the non-limed soils, suggesting that Racocetra is tolerant to Al toxicity. Similarly, Acaulospora and Rhizophagus were also present mostly in both lines in non-limed soils. The community richness of AMF in the non-limed soils was higher than the limed soil for both lines. The results suggest that the soil Al saturation was the parameter that mostly influences the AMF species composition in the soils in this study.

Comparison of Microbial Community of Rhizosphere and Endosphere in Kiwifruit

  • Kim, Min-Jung;Do, Heeil;Cho, Gyeongjun;Jeong, Rae-Dong;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • 제35권6호
    • /
    • pp.705-711
    • /
    • 2019
  • Understanding the microbial community and function are crucial knowledge for crop management. In this study, bacterial and fungal community structures both rhizosphere and endosphere in kiwifruit were analyzed to gain our knowledge in kiwifruit microbiome. Microbial community in rhizosphere was less variation than endosphere community. Functional prediction results demonstrated that abundance of saprotrophic fungi was similar in both rhizosphere and endosphere, but potential pathogenic fungi was more abundance in endosphere than in rhizosphere. This finding suggested that maintain healthy soil is the first priority to protect the host plant against biotic stresses.

농경지에서 재배작물이 토양미생물활성 및 군집구성에 미치는 영향 (Crop Effects on Soil Microorganism Activity and Community Composition in the Agricultural Environment)

  • 백계령;이정태;지삼녀
    • 한국환경과학회지
    • /
    • 제30권5호
    • /
    • pp.379-389
    • /
    • 2021
  • Soil microorganism activity in an agricultural field is affected by various factors including climate conditions, soil chemical properties, and crop cultivation. In this study, we elucidate the correlation between microorganism activity and agricultural environment factors using the dehydrogenase activity (DHA) value, which is one of the indicators of soil microbial activity. As a result, the various factors noted above were related to the DHA value. Annual rainfall, soil Mg2+, bacterial and fungal diversities, types of crops, developmental stages, seasons, and cultivation status were highly correlated with the DHA value. Furthermore, next-generation sequencing (NGS) analysis was used to identify that the type of crop affected soil microbial compositions of both bacteria and fungi. Soil used for soybean cultivation showed the highest relative abundance for Verrucomicrobia, Planctomycetes, and Acidobacteria but Actinobacteria and Firmicutes had the lowest relative abundance. In the case of soil used for potato cultivation, Actinobacteria had the highest relative abundance but Proteobacteria had the lowest relative abundance. Armatimonadetes showed the highest relative abundance in soil used for cabbage cultivation. Among the fungal communities, Mortierellomycota had the highest relative abundance for soybean cultivation but the lowest relative abundance for cabbage cultivation; further, Rozellomycota, Chytridiomycota, and Cercozoa had the highest relative abundance for cabbage cultivation. Basidiomycota had the highest relative abundance for potato cultivation but the lowest relative abundance for soybean cultivation.