• Title/Summary/Keyword: Soil distribution

Search Result 2,613, Processing Time 0.028 seconds

Distribution of Polycyclic Aromatic Hydrocarbons in PM$_{10}$ and its Adjacent Soil of Urban Atmosphere (도시대기의 미세먼지(PM$_{10}$) 및 주변토양중 다환방향족 탄화수소의 농도분포에 관한 연구)

  • 박기학;최성훈
    • Journal of Environmental Health Sciences
    • /
    • v.24 no.2
    • /
    • pp.1-8
    • /
    • 1998
  • This study was carried out to investigate the distribution of PAHs in atmosphere and soil, and their relationship, accumulation tendency in soil, and its contain burden ratio (%) the PM$_{10}$ and soil were sampled adjacent to a roadside and analysed by HPLC from August 25th 1996 to September 22nd 1996 in Seoul and Kunggido area. The main results are summarized below 1. The concentration of PM$_{10}$ in the ambient air was showed in order of industrial region ($142.70\pm 21.77 \mu g/m^3$), commercial region ($136.51\pm 31.62 \mu g/m^3$), residential region ($110.12\pm 14.98 \mu g/m^3$), greenbelt region ($77.44\pm 12.12 \mu g/m^3$), respectively. 2. Distribution of PAHs concentration level in PM$_{10}$ and soil was showed in order of industrial region, commercial region, residential region, greenbelt region, respectively in all components. 3. The contain burden ratio (%) in PM$_{10}$ was attested that BbF was the highest contain burden component (21.7-32%) and An was the lowest contain burden component (0.35-1.95%) in all region. 4. The contain burden ratio (%) in soil was attested that Pb (20.5%) was the highest and An (0.8%) was the lowest contain burden component in industrial region and BbF (21.9%) and An (0.45%) were the same tendency in commercial region and Py (21.6%) and BkF (3.5%) were in residential region, Py (29%) and An (2.6%) were in greenbelt region. 5. The relationship between concentration of PAHs in PM$_{10}$ and soil was attested that the component of BbF (r=0.514) was very highly correlated, and there were significant in Fl and BaA in soil between industrial region and commercial region (P<0.05).

  • PDF

Sediment Erosion and Transport Experiments in Laboratory using Artificial Rainfall Simulator

  • Regmi, Ram Krishna;Jung, Kwansue;Nakagawa, Hajime;Kang, Jaewon;Lee, Giha
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.4
    • /
    • pp.13-27
    • /
    • 2014
  • Catchments soil erosion, one of the most serious problems in the mountainous environment of the world, consists of a complex phenomenon involving the detachment of individual soil particles from the soil mass and their transport, storage and overland flow of rainfall, and infiltration. Sediment size distribution during erosion processes appear to depend on many factors such as rainfall characteristics, vegetation cover, hydraulic flow, soil properties and slope. This study involved laboratory flume experiments carried out under simulated rainfall in a 3.0 m long ${\times}$ 0.8 m wide ${\times}$ 0.7 m deep flume, set at $17^{\circ}$ slope. Five experimental cases, consisting of twelve experiments using three different sediments with two different rainfall conditions, are reported. The experiments consisted of detailed observations of particle size distribution of the out-flow sediment. Sediment water mixture out-flow hydrograph and sediment mass out-flow rate over time, moisture profiles at different points within the soil domain, and seepage outflow were also reported. Moisture profiles, seepage outflow, and movement of overland flow were clearly found to be controlled by water retention function and hydraulic function of the soil. The difference of grain size distribution of original soil bed and the out-flow sediment was found to be insignificant in the cases of uniform sediment used experiments. However, in the cases of non-uniform sediment used experiments the outflow sediment was found to be coarser than the original soil domain. The results indicated that the sediment transport mechanism is the combination of particle segregation, suspension/saltation and rolling along the travel distance.

Influence of Soil Characteristic and Rainfall Intensity on Matric Suction of Unsaturated Weathered Soil Slope (불포화 풍화토 사면의 모관흡수력 분포에 대한 지반조건과 강우강도의 영향)

  • Kim, Yong Min;Lee, Kwang Woo;Kim, Jung Hwan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.3
    • /
    • pp.1017-1025
    • /
    • 2013
  • The monolithically coupled finite element analysis for a deformable unsaturated soil slope is performed to investigate matric suction distribution on a soil slope subjected to rainfall infiltration, which can consider the hydraulic-mechanical characteristics for the analysis. The soil-water characteristic curves (SWCC) are experimentally determined to estimate three types of hydraulic properties of domestic areas. Based on the physical properties, the distribution of matric suction is investigated by considering the major factors, such as soil conditions, rainfall intensities, and slope angles. It is found from the results of this study that the matric suction rapidly decreases with an increase in rainfall intensity, regardless a slope angle. The slope surface is more easily saturated when its saturated hydraulic conductivity is smaller than rainfall intensity, and for the case of multi-layered soil slope, hydraulic characteristics of slope surface has a significant influence on matric suction distribution.

Effect of Livestock Liquid Manure Released at a Rice Field on Quality of Soil and Water in the Saemangeum Watershed (가축분뇨 액비 살포가 새만금유역에서의 논토양과 수질에 미치는 영향)

  • Kim, Mi-Sug;Kwak, Dong-Heui
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.30 no.1
    • /
    • pp.19-31
    • /
    • 2016
  • The Saemangeum watershed is required to manage water pollution effectively but the effect of liquid manure (LM) on soil and water quality in the basin is not clearly identified as yet. This study aims at assessing the effect on soil of a rice field and water quality of water bodies near the rice field during rice-crop time period to find out the effect of LM, the effect of rainfall, and the effect of rice-crop environment on soil and water quality by analyzing data of nitrogen components. As a result of the LM distribution, $NO_3-N$ was much higher than other N components in the entire soil layers and it was accelerated by rainfall right after the LM distribution. Compared to chemical fertilizer (CF), LM was slightly affected but still influenced on the surface water quality. During weak rainfall, low nitrogen concentration in topsoil was resulted as NH3-N decreased and Org-N and $NO_3-N$ increased. $NO_3-N$ concentration in the water of irrigation canals increased with time. During intensive rainfall, $NO_3-N$ and Org-N of the soil were measured highly in the submerged condition, while the water quality of the rice field was lower due to flooding into the irrigation canal as well as the growth of the rice plants. Also, total nitrogen was increased more than 7 times and it showed serious water quality deterioration due to LM and excessive fertilizer distribution, and rainfall during all rice-crop processes. The effect of LM on water quality should be studied consistently to provide critical data while considering weather condition, cropping conditions, soil characteristics, and so on.

Estimation of Spatial Distribution of Soil Moisture at Yongdam Dam Watershed Using Artificial Neural Networks (인공신경망을 이용한 용담댐 유역 공간 토양수분 분포도 산정)

  • Park, Jung-A;Kim, Gwang-Seob
    • Journal of the Korean Geographical Society
    • /
    • v.46 no.3
    • /
    • pp.319-330
    • /
    • 2011
  • In this study, a soil moisture estimation model was proposed using the ground observation data of soil moisture, precipitation, surface temperature, MODIS NDVI and artificial neural networks. The model was calibrated and verified on the Yongdam dam watershed which has reliable ground soil moisture networks. The test statistics of calibration sites, Jucheon, Bugui, Sangjeon, showed that the correlation coefficients between observations and estimations are about 0.9353 and RMSE is about 1.4957%. Also that of the verification site, Cheoncheon2, showed that the correlation coefficient is about 0.8215 and RMSE is about 4.2077%. The soil moisture estimation model was applied to estimate the spatial distribution of soil moisture in the Yongdam dam watershed and results showed improved spatial soil moisture distribution since the model used satellite information of NDVI and artificial neural networks which can represent the nonlinear relationships between data well. The model should be useful to estimate wide range soil moisture information.

Application of magnesium to improve uniform distribution of precipitated minerals in 1-m column specimens

  • Putra, Heriansyah;Yasuhara, Hideaki;Kinoshita, Naoki;Hirata, Akira
    • Geomechanics and Engineering
    • /
    • v.12 no.5
    • /
    • pp.803-813
    • /
    • 2017
  • This study discussed the possible optimization of enzyme-mediated calcite precipitation (EMCP) as a soil-improvement technique. Magnesium chloride was added to the injection solution to delay the reaction rate and to improve the homogenous distribution of precipitated minerals within soil sample. Soil specimens were prepared in 1-m PVC cylinders and treated with the obtained solutions composed of urease, urea, calcium, and magnesium chloride, and the mineral distribution within the sand specimens was examined. The effects of the precipitated minerals on the mechanical and hydraulic properties were evaluated by unconfined compressive strength (UCS) and permeability tests, respectively. The addition of magnesium was found to be effective in delaying the reaction rate by more than one hour. The uniform distribution of the precipitated minerals within a 1-m sand column was obtained when 0.1 mol/L and 0.4 mol/L of magnesium and calcium, respectively, were injected. The strength increased gradually as the mineral content was further increased. The permeability test results showed that the hydraulic conductivity was approximately constant in the presence of a 6% mineral mass. Thus, it was revealed that it is possible to control the strength of treated sand by adjusting the amount of precipitated minerals.

Seasonal Abundance and Vertical Distribution of Soil Microarthropods at the Piagol Mt Chiri (지리산 피아골 토양 미소절지동물상의 계절적 변화 및 수직분포)

  • Hong, Yong;Tae-Heung Kim;Young-Chol Oh
    • The Korean Journal of Ecology
    • /
    • v.19 no.5
    • /
    • pp.393-402
    • /
    • 1996
  • Density fluctuations of soil microarthropods at the Piagol, Mt. Chiri was assessed on the basis of 113, 096 individuals collected from March 1993 to February 1994. Of 6 classes, and 18 orders, the Arachnida and Insecta were the most numerous members with abundance of 51.4% and 46.3%, respectively. The mean density of the Acari was $13, 310/m^2$ of microarthropods. The Acari were abundant in autumn and less found in winter and the density fluctuation of the Collembola followed a similar trend. The vertical distribution of the mesofauna revealed from the soil samples taken from the surface to 5 and from 5 to 10 cm in depths was as follows. In 5~10 cm layer. Collembola was numerous with abundance of 54.7%, followed by 40.1% fo Acari and the soil microarthropods reached the highest density peak in spring, while the lowest in winter. Populations concentrated in the 0~5 cm layer as much as 62.2% throughtout the season and 82.4% throughtout the altitudes. The Acari / Collembola (A/C) ratio in the 0~5 cm layer was higher than that in the 5~10 cm.

  • PDF

A Study on Heavy Metal Pollution in Mongolia Boroo Soil (몽골 버러지역 토양의 중금속 오염 현황 조사)

  • Park, Juhyun;Park, Jayhyun;Kim, Takhyun;Yeon, Gyuhun
    • Journal of Soil and Groundwater Environment
    • /
    • v.23 no.5
    • /
    • pp.17-25
    • /
    • 2018
  • The Boroo area in Mongolia is known to have been contaminated with heavy metals due to irregular gold mining activities and the release of mercury from gold extraction process. Soil and mine tailings were collected to analyze contamination patterns of heavy metals in the Boroo area. Analyses revealed that mercury, arsenic and cadmium concentrations exceeded the regulatory standard of the nation (Mongolia National Standard). In case of mercury, about 80% of the survey area was over the limit and the concentration distribution heavily influenced by influx of mercury through water transport. Soil contamination by arsenic was most severe that the concentration exceeded the regulatory limit in almost entire survey area, showing peak concentrations at nearby streams and river along with ore processing facilities. For cadmium, about 20% of the survey area was over the limit with the concentration distribution similar to that of arsenic.

A Study on the Distribution Stresses beneath Loaded Ground Surface Area of Double Strata Ground on Soft Clay Layers (연약점토층위 이층지반 지표면 재하시 지중응력 특성연구)

  • Lee, In-Hyung;Lim, Jong-Seok
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.47 no.6
    • /
    • pp.47-57
    • /
    • 2005
  • Stress distribution in soils is the very important element to design and to solve the problems of settlement, safety of foundations and trafficability of constructing vehicle in civil engineering. This research presents the comparative estimation of the actual and theoretical measurement on the underground stress of outer layer for each soil after the observation of each top soil layer fur its vertical and horizontal stresses in (1) homogeneous sand ground (2) weak stratum with the sand soil (3) weak stratum with gravel of the soil model, and it also investigates the effect of subsidence of ground by the repeated load. The underground stresses fumed out to be different in the value of theoretical and actual measurement after the trial examination of model. This study has the purpose of suggesting the better construction method of running equipment on weak stratum by comparing the estimated value of trial experiment and theory on underground stress of the weak ground surface area and of raising up the necessity of the continuous research hereafter.

Vertical Distribution of Weed Seed in the Soil as affected by Tillage and No-till (경운과 무경운에 따른 토양 내 잡초종자의 수직적 분포양상)

  • Lee, Byung-Mo;Park, Kwang-Lai;Lee, Youn;Cho, Jeong-Rae;Lee, Sang-Min;An, Nan-Hee;Choi, Hyun-Sug;Jee, Hyeong-Jin
    • Weed & Turfgrass Science
    • /
    • v.1 no.4
    • /
    • pp.1-5
    • /
    • 2012
  • A simple monitoring method was designed to evaluate seed bank in a upper soil (0 to 30 cm depth), which was observed for the pattern of vertical distribution of weed in the soil under tillage or no-tillage condition. The field experiment was established at an organic corn field located in Hwacheon in Kangwon-do from 2010 to 2011. Undistributed linear soil samples were taken using non-destructive soil sampler from 0 to 30 cm depth at the tillage or no-tillage soils. Weed seed distribution in the linear soil samples was estimated by counting the number of weed germinated according to the soil depth. Under tillage condition, the weed seeds were more evenly distributed from 0 to 30 cm depth, with being 75% of weed seeds located in 0 to 15 cm depth compared to the no-tillage condition. Soil samples taken by no-tillage condition had 85% of weed seeds within 15 cm of soil depth, with being 93% of weed seeds from 0 to 20 cm depth. The number of weeds or the number of weed species were three times higher for tillage soil compared to no-tillage soil, and the major dominant weed species were observed for annual plants, such as Echinochloa crus-gall, Mollugo pentaphylla, and Digitaria ciliaris.