• 제목/요약/키워드: Soil conservation

검색결과 873건 처리시간 0.03초

산림시업이 잣나무림의 생장, 토양조공극 및 토양함수능에 미치는 영향 (Effects of Forest Practices on the Changes of Characteristics of Forest Stand, Mesopore Ratio and Soil Water Contents in Pinus koraiensis Stands)

  • 전재홍;정용호;최형태;유재윤
    • 한국환경복원기술학회지
    • /
    • 제11권3호
    • /
    • pp.20-27
    • /
    • 2008
  • This study was conducted to investigate the influence of thinning and pruning on characteristics of forest stand, mesopore ratio and soil water content at the Pinus koraiensis stands in Gwangneung, Gyeonggido. The Pinus koraiensis had been planted in 1976 and thinning and pruning were carried out in 1996. A sample area survey was conducted at experimental plots (thinned and unthinned) in 1998 and 2005, and mesopore ratio and soil water content have been monitored from 2000 to present. Average tree height of the thinned plot increased from 10.9m to 13.2m and from 10.3m to 12.8m for the unthinned plot. Average D.B.H of the thinned plot increased from 15.9cm to 21.1cm and from 14.5cm to 16.7cm for the unthinned plot during the period 1998-2005. Crown density at the thinned plot increased from 81.5% to 95.0% and from 89.5% to 95.0% for the unthinned plot during the period 1998-2005. Mesopore ratio (pF2.7) of A layer soil at the thinned plot was 40.1% while that of the unthinned plot was 37.3%. Changes of mesopore ratio at unthinned plot were not associated with stand age, but those at thinned plot had increased and then decreased, showing declining of the practice effect. Average soil water content at the thinned plot were 23.7% and 22.4% for the unthinned plot. Soil watercontents at both plots have been increased with increase in stand age. But the difference of soil watercontent at each plot has been decreased, especially at the depth of 10cm.

항공사진을 이용한 산지토사재해 영향인자 분석 - 강원도 평창군을 중심으로 - (Analysis of Influence Factors of Forest Soil Sediment Disaster Using Aerial Photographs - Case Study of Pyeongchang-county in Gangwon-province -)

  • 우충식;윤호중;이창우;정용호
    • 한국환경복원기술학회지
    • /
    • 제11권1호
    • /
    • pp.14-22
    • /
    • 2008
  • The forest soil sediment disasters occurred in Jinbu-myeon Pyeongchang county were investigated characteristics by the aerial photograph analysis. After digitizing from aerial photographs, forest soil sediment disaster sites were classified into 695 collapsed sites, 305 flowed sites and 199 sediment sites. DEM (Digital Elevation Model) were generated from 1 : 5,000 digital topographic map. Factors of geography, hydrology, biology, and geology were analyzed using DEM, geologic map, and forest stand map with aerial photographs by GIS spatial analysis technique. The forest soil sediment disasters were mainly occurred from southeastern slope to southwestern slope. In collapsed sit es, the average slope degree is $28.9^{\circ}$, the average flow length is 163.5m, the average area of drainage basin is 897$m^2$. In case of flowed sites, the average slope degree, flow length, the area of drainage basin and confluence order is $27.0^{\circ}$, 175m, 2,500$m^2$ and 1, respectively. In sediment sites, the average slope, flow length, the area of drainage basin and confluence order is $12.5^{\circ}$, 2,50m, 25,000$m^2$ and 4, respectively. Also the forest soil sediment disasters were occurred most of collapsed sites in the afforest land after felling and igneous rocks composed of granite.

Manufacturing Technique of the Avalokitesvara Bodhisattva Mural Painting in Geungnakjeon Hall, Daewonsa Temple, Boseong

  • Yu, Yeong Gyeong;Jee, Bong Goo;Oh, Ran Young;Lee, Hwa Soo
    • 보존과학회지
    • /
    • 제38권4호
    • /
    • pp.334-346
    • /
    • 2022
  • The manufacturing technique was studied through the structure and material characteristics of the walls and the painting layers of the Avalokitesvara Bodhisattva mural of Geungnakjeon Hall, Daewonsa Temple. The mural is painted and connected to the earthen wall and the Junggit, and the wall is composed of wooden laths as a frame, the first and middle layers, the finishing layer, and the painting layer. The first layer, middle layer, and finishing layer constituting the wall were made by mixing weathered soil and sand. It was confirmed that the first layer had a high content of loess below silt, and the finishing layer had a high content of fine-sand and very fine sand. For the painting layer, a ground layer was prepared using soil-based mineral pigments, and lead white, white clay, atacamite, minium, and cinnabar (or vermilion) pigments were used on top of it. The Avalokitesvara Bodhisattva mural was confirmed to belong to a category similar to the soil-made buddhist mural paintings of Joseon Dynasty. However, it shows characteristics such as a high content of fine sand in the finishing layer and overlapping over other colors. Such material and structural characteristics can constitute important information for future mural conservation status diagnoses and conservation treatment plans.

산지사면의 유출 및 토양침식에 대한 에너지 보존 (Energy Conservation for Runoff and Soil Erosion on the Hillslope)

  • 신승숙;박상덕;조재웅;홍종선
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2008년도 학술발표회 논문집
    • /
    • pp.234-238
    • /
    • 2008
  • The energy conservation theory is introduced for investigating processes of runoff and soil erosion on the hillslope system changed vegetation condition by wildfire The rainfall energy, input energy consisted of kinetic and potential energy, is influenced by vegetation coverage and height. Output energy at the outlet of hillslope is decided as the kinetic energy of runoff and erosion soil, and mechanical work according to moving water and soil is influenced dominantly by the work rather than the kinetic energy. Relationship between output and input energy is possible to calculate the energy loss in the runoff and erosion process. The absolute value of the energy loss is controlled by the input energy size of rainfall because energy losses of runoff increase as many rainfall pass through the hillslope system. The energy coefficient which is dimensionless is defined as the ratio of input energy of rainfall to output energy of runoff water and erosion soil such as runoff coefficient. The energy coefficient and runoff coefficient showed the highest correlation coefficient with the vegetation coverage. Maximum energy coefficient is about 0.5 in the hillslope system. The energy theory for output energy of runoff and soil erosion is presented by the energy coefficient theory associated with vegetation factor. Also runoff and erosion soil resulting output energy have the relation of power function and the rates of these increase with rainfall.

  • PDF

일본(日本)에서 계류변(溪流邊)의 환경복원(環境復元) 발전전략(發展戰略)(III) - 임도(林道) 및 치산(治山)·사방(砂防)을 중심(中心)으로 - (Strategic Prospects of Environmental Restoration of Stream Side in Japan(III) - With a Special Reference to the Forest Road, Forest Conservation and Erosion Control -)

  • 박재현;우보명;이헌호
    • 한국환경복원기술학회지
    • /
    • 제3권3호
    • /
    • pp.113-125
    • /
    • 2000
  • This study was carried out to introduce current status and development strategy for an environmental restoration of stream side in Japan, and to consider a methodology which could be effectively applied for the environmental restoration of stream side in Korea. The strategy prospects of environmental restoration in Japan were summarized as follows : 1. When we establish the long term erosion control planning, we should make detail planning after considering of a certain block of watershed units. Because most of the disaster is caused by soil movement which was occurred by water contents. 2. Nowadays, the general torrent erosion control planning system in Japan focused on reducing the sediment such as by placement of erosion control facility and by restoration of afforestation, after calculation of several factors including expected amount of sediment, and the different amount of planned sediment and allowable sediment. 3. In the past, the goal of forest conservation and erosion control planing was to fix the amount of soil movement by construction of permanent facilities. While, the goal of forest conservation and erosion control planning in the future needs to change the techniques to a small and middle scale's soil movement which could prevent soil movement from large scale of soil disasters, but allow soil movement effectively. Also, it is considered to change erosion control dams from non passing type to passing type. 4. Restoration of stream-side ecology, erosion control for the conservation of ecology should be planned and conducted cautiously based on concepts of ecology conservation and development of environmentally sound techniques.

  • PDF

토양의 침식과 보존에 관한 이론적 분석 1. 토양의 생성과 침식 (The Theoretical Analyses of the Soil Erosion and Conservation 1. The Soil Renewal and Erosion)

  • 장남기
    • 아시안잔디학회지
    • /
    • 제10권1호
    • /
    • pp.21-29
    • /
    • 1996
  • The mathematical expression in the forest and grassland soils to express the general concepts involved in such terms "a soil erosion and soil renewal. " The net addition rate in the forest and grassland soils are represented by an equation of $(S_{rb}-S_{ra})-(S_{eb}-S_{ea})={\int}_a^bR(m, cl, re, b, t )dt-{\int}E(w, r, cl, re, ch, b, t)dt{\gtreqqless}0$ where $S_r$, is renewal soil, $S_e$ is soil erosion, and variable factors are m =parent material of soil, cl=climate, re=relief or topography, ch=soil characteristics, r=rain or water, w=wind, b=biota, and t = time.

  • PDF

Application of Remotely Sensed Data and Geographic Information System in Watershed Management Planning in Imha, Korea

  • CHAE Hyo-Sok;LEE Geun-Sang;KIM Tae-Joon;KOH Deuk-Koo
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2005년도 Proceedings of ISRS 2005
    • /
    • pp.361-364
    • /
    • 2005
  • The use of remotely sensed data and geographic information system (GIS) to develop conservation-oriented watershed management strategies on Imha Dam, Korea, is presented. The change of land use for study area was analyzed using multi-temporal Landsat imagery. A soil loss model was executed within a GIS environment to evaluate watershed management strategies in terms of soil loss. In general, remotely sensed data provide efficient means of generating the input data required for the soil loss model. Also, GIS allowed for easy assessment of the relative erosion hazard over the watershed under the different land use change options. The soil loss model predicted substantial declines in soil loss under conservation-oriented land management compared to current land management for Imha Dam. The results of this study indicate that soil loss potential (5,782,829 ton/yr) on Imha Dam in 2003 is approximately 1.27 times higher than that (4,557,151 ton/yr) in 1989. This study represents the first attempt in the application of GIS technology to watershed conservation planning for Imha Dam. The procedures developed will contribute to the evolution of a decision support system to guide the land planning and dam management in Imha Dam.

  • PDF

Assessment of Soil Erosion Loss by Using RUSLE and GIS in the Bagmati Basin of Nepal

  • Bastola, Shiksha;Seong, Yeon Jeong;Lee, Sang Hyup;Shin, Yongchul;Jung, Younghun
    • 한국지반환경공학회 논문집
    • /
    • 제20권3호
    • /
    • pp.5-14
    • /
    • 2019
  • This study attempted to study the soil erosion dynamic in the Bagmati Basin of Nepal. In this study, an inclusive methodology that combines Revised Universal Soil Loss Equation (RUSLE) and GIS techniques was adopted to determine the distribution of soil loss in the study basin. As well, this study attempts to study the intensity of soil erosion in the seven different land use patterns in the Bagmati Basin. Soil loss is an associated phenomenon of hydrologic cycle and this dynamic phenomenon possesses threats to sustainability of basin hydrology, agriculture system, hydraulic structures in operation and overall ecosystem in a long run. Soil conservation works, and various planning and design of watersheds works demands quantification of soil loss. The results of the study in Bagmati Basin shows the total annual soil loss in the basin is 22.93 million tons with an average rate of 75.83T/ha/yr. The computed soil loss risk was divided into five classes from tolerable to severe and the spatial pattern was mapped for easy interpretation. Also, evaluation of soil loss in different land use categories shows barren area has highest rate of soil loss followed by agriculture area. This is a preliminary work and provides erosion risk scenario in the basin. The study can be further used for strategic planning of land use and hydrologic conservation works in a basin.

토양 및 지하수 보전을 위한 토양관리 및 대책방안 (Management Strategy for Soil and Groundwater Conservation)

  • 김경숙;정재춘
    • 한국지하수토양환경학회:학술대회논문집
    • /
    • 한국지하수토양환경학회 1998년도 공동 심포지엄 및 추계학술발표회
    • /
    • pp.221-224
    • /
    • 1998
  • Environmental pollution is continuously increasing with the economic growth and industrial development. With this trend, soil and groundwater pollution problem has been surfaced as important social issues. Recently, Korean government promulgated the Soil Environment Conservation Act. But there are many problems to control sound soil quality management. Anthropogenic source of pollution such as waste landfill, pesticides, fertilizer, underground storage oil tanks is important as well as natural source such as acid rain and forest fire. The regulation should be expanded to include groundwater preservation as well as soil quality, because soil pollution is closely related to groundwater pollution. Therefore, legal regulations must be expanded to these facilities and take into account technical feasibility and finance.

  • PDF