• 제목/요약/키워드: Soil concrete

Search Result 683, Processing Time 0.034 seconds

Mathematical modeling of smart nanoparticles-reinforced concrete foundations: Vibration analysis

  • Kargar, Masood;Bidgoli, Mahmood Rabani
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.465-477
    • /
    • 2018
  • In this research, vibration and smart control analysis of a concrete foundation reinforced by $SiO_2$ nanoparticles and covered by piezoelectric layer on soil medium is investigated. The soil medium is simulated with spring constants and the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. With considering first order shear deformation theory, the total potential energy of system is calculated and by means of Hamilton's principle in three displacement directions and electric potential, the six coupled equilibrium equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of applied voltage, volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with applying negative voltage, the frequency of structure is increased.

Vibration analysis of concrete foundation armed by silica nanoparticles based on numerical methods

  • Mahjoobi, Mahdi;Bidgoli, Mahmood Rabani
    • Structural Engineering and Mechanics
    • /
    • v.69 no.5
    • /
    • pp.547-555
    • /
    • 2019
  • In this study, vibration analysis of a concrete foundation-reinforced by $SiO_2$ nanoparticles resting on soil bed is investigated. The soil medium is simulated with spring constants. Furthermore, the Mori-Tanaka low is used for obtaining the material properties of nano-composite structure and considering agglomeration effects. Using third order shear deformation theory or Reddy theory, the total potential energy of system is calculated and by means of the Hamilton's principle, the coupled motion equations are obtained. Also, based an analytical method, the frequency of system is calculated. The effects of volume percent and agglomeration of $SiO_2$ nanoparticles, soil medium and geometrical parameters of structure are shown on the frequency of system. Results show that with increasing the volume percent of $SiO_2$ nanoparticles, the frequency of structure is increased.

Heavy Metal Contamination of Soil by Wash Water of Ready Mixed Concrete (레미콘 세척수에 의한 토양의 중금속 오염)

  • Oh, Se-Wook;Lee, Bong-Jik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.12 no.5
    • /
    • pp.51-57
    • /
    • 2011
  • Generally, ready-mixed concrete(RMC) gets hardened by time, so the remaining concrete in the drum should be cleaned. But if the RMC waste water generated from this is discharged to soil without any treatment, the strong alkaline elements and heavy metals affect water and ecosystem pollution. Although about 10 to 15% of water used for cleaning in the RMC factory is discharged to soil or river, the concrete report of this affecting soil pollution has not been sufficient. Hence, in this study it was analyzed the extraction of cleaning water from RMC factories all over the country and heavy metal and pH components remaining in soil when this is penetrated to various soils having water permeability. The specimens used for the experiment are weathering soil and soils having different particle size, and it is made to be penetrated to those for 24 hours while fixed thickness of the layer is maintained. Cleaning water is divided into that before deposition treatment(sludge water) and that after deposition treatment(upper water) to be penetrated into soil, and according to the result of penetrating sludge water to soil, Cu and Mn, Fe, and Zn were found to be remained over 23 to 90%. However, it is analyzed that in upper water having deposition treatment, Cu and Mn remain as 60% or more only in weathering soil.

Partial replacement of fine aggregates with laterite in GGBS-blended-concrete

  • Karra, Ram Chandar;Raghunandan, Mavinakere Eshwaraiah;Manjunath, B.
    • Advances in concrete construction
    • /
    • v.4 no.3
    • /
    • pp.221-230
    • /
    • 2016
  • This paper presents a preliminary study on the influence of laterite soil replacing conventional fine aggregates on the strength properties of GGBS-blended-concrete. For this purpose, GGBS-blended-concrete samples with 40% GGBS, 60% Portland cement (PC), and locally available laterite soil was used. Laterite soils at 0, 25, 50 and 75% by weight were used in trails to replace the conventional fine aggregates. A control mix using only PC, river sand, course aggregates and water served as bench mark in comparing the performance of the composite concrete mix. Test blocks including 60 cubes for compression test; 20 cylinders for split tensile test; and 20 beams for flexural strength test were prepared in the laboratory. Results showed decreasing trends in strength parameters with increasing laterite content in GGBS-blended-concrete. 25% and 50% laterite replacement showed convincing strength (with small decrease) after 28 day curing, which is about 87-90% and 72-85% respectively in comparison to that achieved by the control mix.

Dynamic stress response in the nanocomposite concrete pipes with internal fluid under the ground motion load

  • Keshtegar, Behrooz;Tabatabaei, Javad;Kolahchi, Reza;Trung, Nguyen-Thoi
    • Advances in concrete construction
    • /
    • v.9 no.3
    • /
    • pp.327-335
    • /
    • 2020
  • Concrete pipes are considered important structures playing integral role in spread of cities besides transportation of gas as well as oil for far distances. Further, concrete structures under seismic load, show behaviors which require to be investigated and improved. Therefore, present research concerns dynamic stress and strain alongside deflection assessment of a concrete pipe carrying water-based nanofluid subjected to seismic loads. This pipe placed in soil is modeled through spring as well as damper. Navier-Stokes equation is utilized in order to gain force created via fluid and, moreover, mixture rule is applied to regard the influences related to nanoparticles. So as to model the structure mathematically, higher order refined shear deformation theory is exercised and with respect to energy method, the motion equations are obtained eventually. The obtained motion equations will be solved with Galerkin and Newmark procedures and consequently, the concrete pipe's dynamic stress, strain as well as deflection can be evaluated. Further, various parameters containing volume percent of nanoparticles, internal fluid, soil foundation, damping and length to diameter proportion of the pipe and their influences upon dynamic stress and strain besides displacement will be analyzed. According to conclusions, increase in volume percent of nanoparticles leads to decrease in dynamic stress, strain as well as displacement of structure.

Seismic analysis in pad concrete foundation reinforced by nanoparticles covered by smart layer utilizing plate higher order theory

  • Taherifar, Reza;Zareei, Seyed Alireza;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Steel and Composite Structures
    • /
    • v.37 no.1
    • /
    • pp.99-115
    • /
    • 2020
  • This article deals with the dynamic analysis in pad concrete foundation containing Silica nanoparticles (SiO2) subject to seismic load. In order to control the foundation smartly, a piezoelectric layer covered the foundation. The weight of the building by a column on the foundation is assumed with an external force in the middle of the structure. The foundation is located in soil medium which is modeled by spring elements. The Mori-Tanaka law is utilized for calculating the equivalent mechanical characteristics of the concrete foundation. The Kevin-Voigt model is adopted to take into account the structural damping. The concrete structure is modeled by a thick plate and the governing equations are deduced using Hamilton's principle under the assumption of higher-order shear deformation theory (HSDT). The differential quadrature method (DQM) and the Newmark method are applied to obtain the seismic response. The effects of the applied voltage to the smart layer, agglomeration and volume percent of SiO2 nanoparticles, damping of the structure, geometrical parameters and soil medium of the structure are assessed on the dynamic response. It has been demonstrated by the numerical results that by applying a negative voltage, the dynamic deflection is reduced significantly. Moreover, silica nanoparticles reduce the dynamic deflection of the concrete foundation.

Earthquake induced structural pounding between adjacent buildings with unequal heights considering soil-structure interactions

  • Jingcai Zhang;Chunwei Zhang
    • Earthquakes and Structures
    • /
    • v.24 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • The purpose of this paper is to investigate the coupled effect of SSI and pounding on dynamic responses of unequal height adjacent buildings with insufficiently separation distance subjected to seismic loading. Numerical investigations were conducted to evaluate effect of the pounding coupling SSI on a Reinforced Concrete Frame Structure system constructed on different soil fields. Adjacent buildings with unequal height, including a 9-storey and a 3-storey reinforced concrete structure, were considered in numerical studies. Pounding force response, time-history and root-mean-square (RMS) of displacement and acceleration with different types of soil and separations were presented. The numerical results indicate that insufficient separation could lead to collisions and generate severe pounding force which could result in acceleration and displacement amplifications. SSI has significant influence of the seismic response of the structures, and higher pounding force were induced by floors with stiffer soil. SSI is reasonable neglected for a structure with a dense soil foundation, whereas SSI should be taken into consideration for dynamic analysis, especially for soft soil base.

폐콘크리트에 대한 구리(Cu)와 납(Pb)의 중금속 흡착 특성

  • 이용수;조재범;현재혁;정하익;정형식
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.277-280
    • /
    • 2000
  • Annually a greate many of mineral demolition wastes consisting mainly of concrete and bricks, is produced in Korea. Waste concrete present a significant potential as construction material. Therefor a series of test was peformed on waste concrete to evaluate adsorption for Cu and Pb.

  • PDF

Case Study of Geogrid Reinforcement in Runway of Inchon International Airport (지오그리드를 활용한 인천국제공항 활주로 보강사례)

  • 신은철;오영인;이규진
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1999.11c
    • /
    • pp.105-116
    • /
    • 1999
  • The Inchon International Airport site was formed by reclaimed soil from the sea. The average thickness of soft soil Is about 5 m and most of soft soils are normally consolidated or slightly over consolidated. There are many box culverts which are being constructed under the runways in the airfield. Sometimes, differential settlement can be occurred in the adjacent of box culvert or underground structures at the top layer of runway Soil compaction at very near to the structure is not easy all the time. Thus, one layer of geogrid was placed at the bottom of lean concrete layer for the concrete paved runway and at the middle of cement stabilized sub-base course layer for the asphalt paved runway. The length of geogrid reinforcement is 5m from the end of box culvert for both sides. The extended length of geogrid was 2m from the end of backfill soil in the box culvert. The tensile strength tests of geogrid were conducted for make sure the chemical compatibility with cement treated sub-base material. The location of geogrid placement for the concrete paved runway was evaluated. The construction damage to the geogrid could be occurred. Because the cement treated sub-base layer or lean concrete was spread by the finisher. The magnitude of tensile strength reduction was 1.16%~1.90% due to the construction damage and the ultimate tensile strength is maintained with the specification required. Total area of geogrid placement in this project is about 50,000 $m^2$.

  • PDF

Integral Abutment Bridge behavior under uncertain thermal and time-dependent load

  • Kim, WooSeok;Laman, Jeffrey A.
    • Structural Engineering and Mechanics
    • /
    • v.46 no.1
    • /
    • pp.53-73
    • /
    • 2013
  • Prediction of prestressed concrete girder integral abutment bridge (IAB) load effect requires understanding of the inherent uncertainties as it relates to thermal loading, time-dependent effects, bridge material properties and soil properties. In addition, complex inelastic and hysteretic behavior must be considered over an extended, 75-year bridge life. The present study establishes IAB displacement and internal force statistics based on available material property and soil property statistical models and Monte Carlo simulations. Numerical models within the simulation were developed to evaluate the 75-year bridge displacements and internal forces based on 2D numerical models that were calibrated against four field monitored IABs. The considered input uncertainties include both resistance and load variables. Material variables are: (1) concrete elastic modulus; (2) backfill stiffness; and (3) lateral pile soil stiffness. Thermal, time dependent, and soil loading variables are: (1) superstructure temperature fluctuation; (2) superstructure concrete thermal expansion coefficient; (3) superstructure temperature gradient; (4) concrete creep and shrinkage; (5) bridge construction timeline; and (6) backfill pressure on backwall and abutment. IAB displacement and internal force statistics were established for: (1) bridge axial force; (2) bridge bending moment; (3) pile lateral force; (4) pile moment; (5) pile head/abutment displacement; (6) compressive stress at the top fiber at the mid-span of the exterior span; and (7) tensile stress at the bottom fiber at the mid-span of the exterior span. These established IAB displacement and internal force statistics provide a basis for future reliability-based design criteria development.