• Title/Summary/Keyword: Soil chemicals

Search Result 370, Processing Time 0.024 seconds

토양에 따른 유기오염물질의 흡.탈착특성

  • Lee Yun-Guk;Baek Gye-Jin;Choi Byeong-Han;Kim Yeon-Hui;Park Jeong-Hun
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.191-194
    • /
    • 2005
  • Characteristics of sorption and desorption in soils affect chemical fate, soil-remediation time, and selection of remediation technology. The sorption and desorption behavior of atrazine and naphthalene on soils was studied. Six soils collected at Gwangju area were used as sorbents and the organic matter contents ranged from 1.28 to 5.21%. Sorption and desorption experiments were conducted and sorption distribution coefficients(Kd) of atrazine and naphthalene were nearly linear$(R^2=0.93{\sim}0.97)$. Desorption parameters were evaluated using three site desorption model included equilibrium, nonequilibrium and nondesorption sites. Non-desorbable site fraction for atrazine was evaluated, but for naphthalene it was not enumerated during the experimental period. Through the series dilution desorption experiments, non-desorpbable sites were observed for both chemicals.

  • PDF

Investigation on Source Strength to Acid Rain in the Seoul Area (서울시 산성비의 원인물질에 관한 연구)

  • 신응배;이상권;안규홍
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.2 no.2
    • /
    • pp.66-74
    • /
    • 1986
  • Rain samples were collected at 10 sites in the Seoul area during the period of August through November, 1985. THe concentrations of the major cations $(H^+, Ca^{++}, MG^{++}, Na^+, K^+, NH_4^+)$ and the major anions $(SO_4^=, NO_3^-, Cl^-)$ were measured to characterize the main sources of chemical ions in rainwater. Correlating concentrations of ions to pH, calculated coefficients ranged from 0.1485 to 0/4296. Sulfate shows the largest coefficient indicating that sulfate is more closely associated with hydrogen ion than other ions. This may suggest that sulfuric acid contributes more to the acidity of rainwater in Seoul. It appears that the major chemicals measured in rainwater are from the anthropogenic sources of air pollution. Predominant chemicals are acidic at the Guro-, the Sinseol-, the Yangnam-, and the Ssangmun-dong with sulfate being the most predominant. IT also indicates that alkaline substances resulting from soil and dust have a significant effect on pH values of rainwater by neutralizing actions. According to Granat-model analysis, it is estimated that the relative contributions to the rainwater acidity in Seoul are 84% from sulfuric acid, 8% from nitric acid and 8% from hydrochloric acid.

  • PDF

Multi-Channel Two-Stage 시스템을 이용한 수질 독성 모니터링의 지표 확립 및 모사

  • Kim, Byeong-Chan;Gu, Man-Bok
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.11a
    • /
    • pp.715-718
    • /
    • 2000
  • The character of a recombinant bioluminescent bacteria's light emission enables us to monitor toxicity in water, soil and air. In this study, various bioluminescent responses to water samples containing toxic chemicals, such as phenol and mitomycin C, were obtained and analysed through the use of a multi-channel two-stage minibioreactor system. The bioluminescent pattern from each channel can be used as a standard for identifying the degree of toxicity in field samples. When various concentrations of toxic chemicals were injected in a step manner, different bioluminescent patterns were obtained. Also this system showed variation in its bioluminescent pattern as the injection manner was changed, i.e. using a modified version of the bell-curve type injection. In conclusion, the toxicity was shown to be related with the bioluminescent response when using these standard bioluminescent patterns. Comparing this standard with a bioluminescent response from a field sample, we can estimate the degree of which the sample is toxic.

  • PDF

Genotoxicity of the Herbicide 2,4-Dichlorophenoxyacetic acid (2,4-D): Higher Plants as Monitoring Systems

  • Enan, Mohamed R.
    • Journal of Forest and Environmental Science
    • /
    • v.25 no.3
    • /
    • pp.147-155
    • /
    • 2009
  • Higher plants provide valuable genetic assay systems for screening and monitoring environmental pollutants. They are now recognized as excellent indicators of mutagenic effects of environmental chemicals and are applicable for the detection of environmental mutagens both indoor and outdoor. 2,4-dichlorophenoxyacetic acid (2,4-D) is a herbicide commonly used in agriculture. The residues of 2,4-D are present in air, water, soil and edible plants. It constitutes a real hazard to the public health because it's wide spread use in agriculture. Genotoxic effects of 2,4-D on plant cells and potential of higher plants as a biomonitoring system for detecting chemical mutagens are evaluated. It is recommended that higher plant systems have been accepted by regulatory authorities as an alternative biomonitoring system for the detection of possible genetic damage resulting from pollution and the use of environmental chemicals.

  • PDF

The Current Status of Strong Acids Production, Consumption, and Spill Cases in Korea (사고 누출 화학물질 중 강산의 생산, 사용 현황 및 사고 사례 분석)

  • Shin, Doyun;Moon, Hee Sun;Yoon, Yoon Yeol;Yun, Uk;Lee, Yunho;Ha, Kyoochul;Hyun, Sung Pil
    • Journal of Soil and Groundwater Environment
    • /
    • v.19 no.6
    • /
    • pp.6-12
    • /
    • 2014
  • We reviewed literature focusing on the amounts of domestic production, distribution, and consumption of strong acids and their spill cases. In particular, we investigated the chemistry and toxicity of four strong acids classified as "accident preparedness substances," including hydrochloric, nitric, sulfuric, and hydrofluoric acid. We recommend sulfuric and hydrofluoric acid as the chemicals of priority control based on the amounts used and toxicity. An advanced prevention/response system needs to be established along with an improved human and social infrastructure to prevent and efficiently respond to chemical accidents. Understanding the behavior and transport of spilled strong acids in the soil and groundwater environments requires a multi-disciplinary approach since they go through a variety of chemical and biogeochemical reactions with complex geomedia. However, no such research has been done in this area in Korea to the best of our knowledge. We expect the results of this study to contribute as basic data to future research.

Control Efficacy of Ethaboxam on Chinese Cabbage Clubroot Caused by Plasmodiophora brassicae (Ethaboxam의 배추 뿌리혹병 방제효과)

  • Choi, Gyung-Ja;Jang, Kyoung-Soo;Kim, Jin-Cheol;Lim, He-Kyoung;Chun, Sam-Jae;Kim, Dal-Soo;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.9 no.1
    • /
    • pp.81-87
    • /
    • 2005
  • Ethaboxam[(RS)-N-(a-cyano-2-thenyl)-4-ethyl-2-(ethylamino)-1,3-thiazole-5-carboximide] is a novel fungicide with high level of activity against Oomycetes fungi. The control effects of ethaboxam technical and various ethaboxam formulations were investigated against P. brassicae, the causal agent of clubroot disease in Chinese cabbage. When ethaboxam was applied to infested soil, club formation caused by P. brassicae was strongly inhibited at 8.33 mg/L soil and $EC_{50}$ of ethaboxam was 2.65 mg/L soil. Five ethaboxam formulations [10% suspension concentrate (SC), 15% SC, 2% granule (GR), 5% GR, 25% wettable powder] and mixture formulation of ethaboxam and metalaxyl (3%+1% GR) exhibited good efficacy against the pathogen. 10% SC, 15% SC, and 2% GR formulations of ethaboxam showed better disease controlling efficacy on Chinese cabbage clubroot than the other formulations. The $EC_{50}$ values of 10% SC, 15% SC, and 2% GR formulations of ethaboxam were 3.72 mg AI/L soil, 1.1 mg AI/L soil, and 4.95 mg AI/L soil, respectively. Among them, soil drenching application by 15% SC formulation of ethaboxam exhibited the most in vivo antifungal activity on P. brassicae. These results indicate that ethaboxam has a high potential for the control of clubroot disease.

Remedial Action Technologies for the Contaminated Soil and Groundwater, and its Usage (오염부지 정화기술과 그 이용기법)

  • 이민효
    • Journal of the Korean Society of Groundwater Environment
    • /
    • v.3 no.2
    • /
    • pp.60-69
    • /
    • 1996
  • Along with rapid industrial development, toxic chemicals have been discharged extensively into the environment. Many of them have flowed into the soil which is final acceptor of environmental pollutants. As a result, they have deteriorated soil and groundwater environment. Once the soil and groundwater were contaminated by pollutants, these media can not be easily restored without artificial remediation. Foreign countries which accomplished earlier industrialization compared to our country have invested enormous capital for the remediation of contaminated sites and the development of relevant technology. In our country the reserch on the development of remediation technology has been conducted for several years, but it is still in its initial stage. This report represents remediation technologies, their adaptability and clean up procedure etc. which are being used for the managenent of contaminated site in advanced countries.

  • PDF

Sequestration of Organic Pollutants in the Environments: Implications on Bioavailability and Bioremediation

  • Nam, Kyoungphile
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.107-118
    • /
    • 2000
  • For the last several decades, the fate of organic pollutants has been extensively studied in natural environments with emphasis on sorption and desorption phenomena. Although the mechanisms involved are not clear yet there is a consensus about the existence of hysteresis in the sorption and desorption of organic pollutants. Furthermore, it is found that hysteresis is the outcome of slow nonequilibrium sorption of organic pollutants, which results in the formation of desorption-resistant fractions of the pollutants. Desorption-resistant fractions may increase as a function of the residence time of the pollutants in the environments. Field monitoring data show a slow but continuous decline of chemicals applied to soil, followed by little or no subsequent disappearance. One plausible explanation for such resistance to biodegradation, desorption, or extraction can be attributed the gradual movement of organic pollutants to less accessible remote sites inside the matrix with time. This phenomenon has been termed sequestration or aging. The fact that some pollutants are sequestered in soil with time may have a great impact on bioremediation and risk assessment, Some portion of the resistant pollutants may still be present in the environments after bioremediation. It requires vigorous means to completely remove the aged portion that may not be further bioavailable. However, precaution should be taken since aging is not always evident. Aging seems to be soil and chemical specific.

  • PDF

Transformation for 1,3-Dichloropene of Soil Fumigant in Water and Soil (토양 훈증제 1,3-Dichloropene의 물 및 토양 중 분해)

  • Kim, Jung-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.12
    • /
    • pp.1463-1468
    • /
    • 2007
  • Emission of methyl bromide(MeBr) of soil fumigant was implicated in stratospheric ozone depletion. To determine the environmental fate for 1,3-dichloropene(1,3-D) of alternatives fumigants for MeBr, this paper researched the transformation for 1,3-D in water and soil. Half lives of cis-1,3-D in water with first-order kinetics are 9.9day and 1.7day at $25^{\circ}C\;and\;40^{\circ}C$, half lives of trans-1,3-D are 8.6day and 1.5day at $25^{\circ}C\;and\;40^{\circ}C$, respectively. Transformation for 1,3-D in water at high temperature faster then at low temperature. Hydrolysis for 1,3-D in water are unaffected at $pH\;2.5{\sim}pH\;10.0$, but hydrolysis for 1,3-D at pH 11.5 higher then at $pH\;2.5{\sim}pH\;10.0$. Half lives of cis-1,3-D in soil are 11.5day and 7.7day at 3% and 10% of soil moisture, half lives of trans-1,3-D are 9.9day and 6.9day at 3% and 10% of soil moisture, respectively. Transformation for 1,3-D in water increased with increasing soil moisture. Transformation for trans-1,3-D isomer are more rapid then cis-1,3-D isomer in water and soil. This research has identified that transformation for 1,3-dichloropropene are affected by temperature, pH, soil moisture, and isomer of cis and trans in water and soil.

An Experimental Study on Engineering Characteristics of Wet Dredged Soil and Dry Dredged Soil after Chemical Treatment (습윤준설토와 노건조준설토의 약품처리 후 공학적 특성에 관한 실험적 연구)

  • Chang, Yongchai;Park, Kiyoun;Park, Jongcheol;Lee, Ingyu
    • Journal of the Korean GEO-environmental Society
    • /
    • v.13 no.3
    • /
    • pp.71-76
    • /
    • 2012
  • Since sediment in a stable state is disturbed during the process from sediment in a natural state to dredged soil, the turbidity of water is not good. When the dredged soil settles again, the volume change in the sediment occurs. Coagulant and flocculant are added for turbidity mitigation of the water and faster settling process of suspended solid, and the amount of the substances affects the characteristics of the dredged soil. This study is to investigate the characteristics of the dredged soil depending on the amount of three chemical products added to the wet dredged soil and the dry dredged soil through measuring the suspended solids (SS), volume change and sedimentation velocity. The experimental measurements show that the SS decreased, the volume change rate increased, and the sedimentation velocity increased, as the chemical amount increased. In addition, it was found that the dry dredged soil reacted even with little quantity of the chemicals because derelict and microorganism are removed due to the drying process at $100{\pm}5^{\circ}C$.