• Title/Summary/Keyword: Soil chemical and biological properties

Search Result 147, Processing Time 0.026 seconds

Granulation of Natural Zeolite Powder Using Portland Cement (포트랜드 시멘트를 이용한 천연 지올라이트 미분의 입단화)

  • Kim, Su-Jung;Zhang, Yong-Seon;Ok, Yong-Sik;Oh, Sang-Eun;Yang, Jae-E.
    • Korean Journal of Environmental Agriculture
    • /
    • v.26 no.3
    • /
    • pp.259-266
    • /
    • 2007
  • Enormous amount of zeolite by-products as a fine powder have been produced while manufacturing commercial zeolite products. Granulation of the zeolite by-products is necessary in order for them to be recycled as soil conditioners or absorbent for various environmental contaminants due to the limitations inherent from their physical properties. We granulated the zeolite powders using Portland cement as a cementing agent and characterized the physical and chemical properties of the granulated zeolite product. The experimental natural zeolite had a Si/Al ratio of 4.8 and CEC of 68.1 $cmol_c\;kg^{-1}$. The X-ray diffractometry (XRD) revealed that clinoptilolite and mordenite were the major minerals of natural zeolite. Smectite, feldspar and quartz also existed as secondary minerals. Optimum conditions of granulated zeolite production occurred when natural zeolite was mixed with Portland cement at a 4:1 ratio and granulated using the extruder, left to harden for one month at $25^{\circ}C$ and treated at $400^{\circ}C$ for 3 hours. The wide spectra of XRD revealed that the granulated zeolite had amorphous oxide minerals. The alkali- or thermal-treated natural zeolite exhibited pH-dependent charge properties. The major minerals of the granulated zeolite were clinoptilolite, mordenite and tobermorite. The buffering capacity and charge density of the granulated zeolite were greater than those of natural zeolite.

Nematicidal and Plant Growth-Promoting Activity of Enterobacter asburiae HK169: Genome Analysis Provides Insight into Its Biological Activities

  • Oh, Mira;Han, Jae Woo;Lee, Chanhui;Choi, Gyung Ja;Kim, Hun
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.6
    • /
    • pp.968-975
    • /
    • 2018
  • In the course of screening for microbes with nematicidal activity, we found that Enterobacter asburiae HK169 displayed promising nematicidal activity against the root-knot nematode Meloidogyne incognita, along with plant growth-promoting properties. Soil drenching of a culture of HK169 reduced gall formation by 66% while also increasing root and shoot weights by 251% and 160%, respectively, compared with an untreated control. The cell-free culture filtrate of the HK169 culture killed all juveniles of M. incognita within 48 h. In addition, the nematicidal activity of the culture filtrate was dramatically reduced by a protease inhibitor, suggesting that proteolytic enzymes contribute to the nematicidal activity of HK169. In order to obtain genomic information about the HK169 isolate related to its nematicidal and plant growth-promoting activities, we sequenced and analyzed the whole genome of the HK169 isolate, and the resulting information provided evidence that the HK169 isolate has nematicidal and plant growth-promoting activities. Taken together, these observations enable the future application of E. asburiae HK169 as a biocontrol agent for nematode control and promote our understanding of the beneficial interactions between E. asburiae HK169 and plants.

Growth, Yield and Grain Quality of Rice Affected by Application of Crab Shell, Sericite Ore, and Charcoal Powders (게 껍질, 견운모 및 숯 분말이 벼의 생육, 수량 및 쌀의 품질에 미치는 영향)

  • Lee, Suk-Soon;Lee, Mun-Joung;Kim, Bok-Jin;Hong, Seung-Beom
    • Korean Journal of Environmental Agriculture
    • /
    • v.24 no.2
    • /
    • pp.185-190
    • /
    • 2005
  • An experiment was conducted to know the effects of crab shell, sericite ore, and charcoal powders on the growth, yield, and grain quality of rice. After application of 110-40-57 kg/ha of $N-P_2O_5-K_2O$, 3,000 kg/ha of crab shell and charcoal powders and 5,000 kg/ha of sericite ore powder were applied and incorporated into soil before transplanting of rice seedlings. The number of tillers and panicles, leaf area index at heading stage, N concentration of plants, and protein content and chalkiness of rice grains were increased with the application of crab shell powder, while the percentage of ripened stains and head rice and Toyo taste value were decreased. The yield of milled rice and other grain appearance and chemical and physical properties of rice grains were not affected by the application of crab shell powder. The sericite ore and charcoal powders increased protein content decreased Toyo taste value, but did not affect on the growth, yield and yield components and other grain qualities.

Properties of Soil Suppressiveness to Cucumber Wilt, caused by Fusarium oxysporum f. sp. cucumerinum Owen (오이 덩굴쪼김병의 발병(發病)을 억제(抑制)하는 토양(土壤)의 특성(特性)에 관(關)하여)

  • Park, Chang-Seuk;Cho, Yong-Sup
    • Korean journal of applied entomology
    • /
    • v.24 no.2 s.63
    • /
    • pp.85-95
    • /
    • 1985
  • It has been tried to find effective biological control measures involved in nature of soil suppressiveness to fusarium wilt of cncumber caused by Fusarium oxysporum f. sp. cucumerinum Owen. Total 28 soil samples were obtained from Jinju, Haman, Namji, Milyang and Suncheon vinyl house area. The disease response of test soil was quantified in terms of DI50 value which caculated from log-probit transformation of diseases response curves. Soils designated 5 from Jinju, 7 from Suncheon, 22 from Namji were recognized as suppressive to fusarium wilt of cucumber. This suppressiveness was completely nullified after autoclave. The disease suppressiveness of tested soil did not indicate any consistency according to either chemical property or texture of soil. Conidial germination, induction and germination of chlamydospore were markedly inhibited in supprerssive soil compared to those in intermediate or conducive soils, however, mycelial lysis did not appear to have direct relationship with disease suppressiveness of given soil. Population density of fluorescent Pseudomonads and Bacillus spp. in the soil originated from different degree of suppressiveness were not different significantly but the number of lytic bacterial plaques measured by triple layer agar method was remarkably higher in suppressive soil than that in intermediate or conducive soil.

  • PDF

Impact of Compost Application on Improvement of Rice Productivity and Quality in Reclaimed Soil (간척지 토양에서 퇴비처리가 벼의 생산 및 품질개선에 미치는 영향)

  • Moon, Young-Hun;Kwon, Young-Rip;Ahn, Byung-Koo;Kim, Dae-Hyang;Han, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.5
    • /
    • pp.808-813
    • /
    • 2011
  • This study was conducted to reduce the dependability of farmers on chemical fertilizers for rice cultivation. Soil chemical and biological properties were monitored before experiment and at the time of harvesting. The results showed that EC, available $SiO_2$, and exchangeable $Ca^{2+}$ were decreased at the time of harvesting while pH, OM, and exchangeable $K^+$ and $Mg^{2+}$ were remain unchanged, compared with soil before experiment. Population of aerobic bacteria, Bacillus sp., and fungi were also increased at the time of harvesting in the paddy field, compared with before fertilization, in the treatment of 50% soil-testing fertilizer+ 50% compost. Concentrations of N, P, and K in rice leaves increased with the fertilizers application, maximum increase was recorded in 50% soil-testing fertilizer+ 50% compost. Non-significant difference was observed in the morphological parameters of rice among the treatments. The chlorophyll contents of rice leaf increased in a similar fashion up to 60 days, thereafter, sharp decrease was observed in all the treatments. Maximum yield (per 10a) was recorded in the field treated with 50% soil-testing fertilizer+ 50% compost followed by standard applied fertilizer, 70% soil-testing fertilizer+ 30% compost, soil-testing fertilizer and unfertilized plot. Amylose content showed non-significant difference within the treatments. Protein content increased with the use of fertilizers and best protein content was recorded in the treatment of 50% soil-testing fertilizer+ 50% compost. It was concluded that the amount of the chemical fertilizer used was directly proportional to the protein content of rice grain. However, the palatability of rice grown in unfertilized field was better than the treatments but minimum yield was obtained. Hence, the treatment of 50% soil-testing fertilizer+ 50% compost, was the best among the fertilizer combinations for rice cultivation as supported by the yield, protein and palatability index.

Soil healthy assesment of organic wastes-treated lysimeter by Basidiomycota (담자균류를 이용한 폐기물연용 밭토양의 건전성 간이평가)

  • Jang, Kab-Yeul;Weon, Hang-Yeon;Choi, Sun-Gyu;Kweon, Soon-Ik;Kim, Gyu-Hyun;Kong, Won-Sik;Yoo, Young-Bok;Sung, Jae-Mo
    • Journal of Mushroom
    • /
    • v.5 no.1
    • /
    • pp.43-49
    • /
    • 2007
  • Application of sludge wastes into the field may help soil fertility with physical, chemical and biological properties. Efficient use of sludge waste, however, requires an individual assessment of the waste products. A lot of experiment into the organic waste-treated soils has been done for decade. However, studies have not been carried out on the assessment of agricultural soil by Basidiomycota. This study was assessed the influence of sludge application on soil healthy in agricultural upland soils. The organic wastes selected for long-term application experiment in this study were municipal sewage sludge (MSS), industrial sewage sludge (ISS), leather processing sludge (LS), alcohol fermentation processing sludge (FS), and pig manure compost (PMC). To develop the soil healthy assesment method, soil samples were diluted by 20X with distilled water. After shaking at 200rpm for 30 minutes, the shaked sample was mixed on PDA(Potato Dextrose Agar). And sterilized at $121^{\circ}C$ for 20 minutes. Coriolus hirsutus (MKACC 50560) was inoculated on petri-dish including PDA mixed sample. After the media was incubated at $25^{\circ}C$ for five days, the mycelial growth of C. hirsutus was measured. When the mycelial growth on sample media was compared with growth on media contained PDA only, well grown media contained sample soil was assesed as healthy soil. The results suggest that the simple method by Coriolus hirsutus is a handy way to assess the healthy of waste sludge-applied upland soils.

  • PDF

Effect of Perforated PVC Underdrainage Pipe on Desalting of Plastic Film House Soils (시설재배지 유공관 암거배수에 의한 염류집적 경감효과)

  • Kim, Dae-Su;Yang, Jae E.;Ok, Yong-Sik;Yoo, Kyung-Yoal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.39 no.2
    • /
    • pp.65-72
    • /
    • 2006
  • Objective of this research was to remove the accumulated salts in the plastic film house soils by installing the perforated PVC (${\phi}10cm$) underdrainage pipes at 50 cm depth of soils with cultivating vegetables. Efficiency of the underdrainage pipes was assessed based on the changes of soil chemical properties such as pH, EC, and cations, and growth and yield parameters of the vegetables between the two treatments; the control and the underdrainage pipe treatments. The EC of the underdrainage pipes installed soils after two growing seasons were in the ranges of $1.42-2.88dS\;m^{-1}$ but those of the control were in the ranges of $3.86-4.53dS\;m^{-1}$, indication the underdrainage pipes effectively removed the accumulated salts in soils. The pHs of the control soils and the underdrainage pipe installed soil were in the ranges of 7.2-7.5 and 6.9-7.3, respectively. There was a significant correlation between pH and cation exchange capacity (CEC) of the soils ($CEC=17.107{\times}pH-106.2$, $r^2=0.759$, P < 0.05). The ECs of the soils at different depths were compared between the two treatments after cultivating vegetables with lettuce-lettuce-garland chrysanthemum rotation systems. The ECs of the control soils at depths of 0-10, 10-20, 20-30, 30-40, and 40-50 cm were 3.45, 3.47, 3.03, 2.03, and $2.28dS\;m^{-1}$, respectively, with decreasing with soil depths. On the other hand, the respective ECs of the underdrainage pipes installed soils were 2.43, 2.52, 2.28, 4.00, and $4.23dS\;m^{-1}$ with increasing with soil depths. This might be derived from the salts moved downward with the draining water into the subsoil. The order of cations moved downward was Mg > Ca > K, based on the ratios of cations at specific depth over those at the surface soil. The survival rates of lettuce after 15 days of transplanting in the underdrainage pipe installed soils were 98.2% as compared to 86.6% of the control. The underdrainage pipe treatment also increased the diameter of the lettuce stalk from 12.9mm of the control to 13.7mm. Overall results demonstrated that the installment of the underdrainage pipes in the subsoils of the salt accumulated plastic film house soil effectively removed the salts by leaching downward,resulting in lowering soil EC and enhancing the growth and yield of vegetables.

A Study on the Effect of Air Pollutants in Daegu Area by Biological Indicator of Roadside (道路 指標生物을 이용한 대기오염이 植物에 미치는 영향에 관한 연구)

  • Kang, Hoe-Yang;Cha, Sang-Eun;Ha, Cheong-Gun
    • Journal of Environmental Health Sciences
    • /
    • v.14 no.2
    • /
    • pp.29-41
    • /
    • 1988
  • This study was performed to investigate the air pollution levels in Daegu area titrough measuring of contents of water, chlorophyll, water soluble sulfur and lead metal in the leaves of roadside trees and chemical properties of soil under the urban trees. The results can be summarized as follows 1. The range of water content was from 60.4% to 74.6%. The comparisons of chlorophyll, water soluble sulfur and water content were regression equation, chlorophyll=0.1981+ 0.0040 water content (July), water soluble sulfur=3,139-0.0416 water content (July). and correlation coefficient, r=0.561 and r=0.549 respectively 2. Average contents of chlorophyll, water soluble sulfur and lead metal in the leaves of roadside tree at sampling sites were chlorophyll 0.050, 0.072mg/cm$^2$, water soluble sulfur 0.244, 0.333%, and lead metal 12.25, 12.68ppm in Oct. and Jul. respectively. 3. Correlation between chlorophyll and contents of water soluble sulfur and lead metal in the leaves of roadside tree at sampling sites were water soluble sulfur r=-0.564, -0.613 and lead metal r=-0.693, -0.699 in October and July, respectively. 4. Correlation between chlorophyll and water content, water soluble sulfur and lead metal in the leaves of tree showed positive significance.

  • PDF

Management of Recycled Nutrient Resources using Livestock Waste in Large-Scale Environment-Friendly Agricultural Complex (광역친환경농업단지의 경축순환자원 양분관리)

  • Moon, Young-Hun;Ahn, Byung-Koo;Cheong, Seong-Soo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.2
    • /
    • pp.177-184
    • /
    • 2012
  • This experiment was carried out to investigate soil properties and the requirement of livestock manure compost in a large-scale environment-friendly agricultural complex (EFAC), Gosan, Wanju-gun, Jeonbuk. Total cultivation area of major crops was 2,353 ha. This complex area included different types of environment-friendly cropping sections (402.9ha) and livestock farming including 21,077 Korean beef cattle, 1,099 dairy cow, and 32,993 hog. Amount of livestock waste carried in to Resource Center for Crop and Livestock Farming (RCCLF) was 32 Mg per day and the production of manure compost was 9,600 Mg per year. The manure contained 1.4% total nitrogen (T-N), 2.7% phosphorus as $P_2O_5$, 2.1% potassium as $K_2O$, 0.9% magnesium as MgO, 2.5% calcium as CaO. Amount of compost used in the EFAC was 6,588 Mg per year. Soil pH values in the EFAC were varied as follows: 78.1% of paddy field soil, 58.2% of upland soil, 60.3% of orchard field soil, and 62.1% of greenhouse soil were in proper range. For the content of soil organic matter, 41.7% of paddy field soil, 46.5% of upland soil, 40.5% of orchard field soil, and 81.4% of greenhouse soil were higher than proper range. The content of available phosphorus was mostly higher than proper value on the different fields except upland soil. The contents of exchangeable $K^+$, $Ca^{2+}$, and $Mg^{2+}$ were also exceeded in the orchard field and greenhouse soils. In addition, microbial population, especially aerobic bacteria, in the EFAC was higher than that in regular farming land.

Effects of Green Manure Crops on Improvement of Chemical and Biological Properties in Soil (토양 화학성 및 생물학성 변화에 대한 녹비작물 시용 효과)

  • Choi, Bong-Su;Jung, Jung-Ah;Oh, Mi-Kyung;Jeon, Sang-Ho;Goh, Hyun-Gwan;Ok, Yong-Sik;Sung, Jwa-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.5
    • /
    • pp.650-658
    • /
    • 2010
  • We used green manure crops such as hairy vetch, crimson clover, rye, sorghum, and sudan grass by mixing with soils to assess the effects of green manure crops on nutrient supply and soil quality improvement. Temporal changes in soil inorganic nitrogen, carbohydrate, microbial biomass, and humus content were determined as soil quality indicators. Inorganic nitrogen content of the control maintained similar level during the whole period, but it had continually increased until 4 weeks after incorporation (WAI) of green manure crops. Especially, inorganic nitrogen content sharply increased in sudan grass. After incorporation of green manure crops, temporal change of soluble sugar in soils was as follows: it had gradually increased in legume green manure crops-incorporated soils until 7 WAI, which was the highest, and then showed the tendency to be reduced. Meanwhile, it in non-legume green manure crops-incorporated soils rapidly increased after the incorporation, and reached the maximum around 4 WAI. Humic acid by the decomposition of crop residues in green manure crops-incorporated soils was greatly enhanced with the elapsed time of 4 WAI, although it was low at the same level as the control until 2 weeks. In addition, there was a difference in fulvic acid by incorporated crops, fulvic acid in hairy vetch, sorghum and sudan grass showed a similar tendency with the change in humic acid. Our results suggest that soluble sugar, microbial activity and humic acid could be available indicators to evaluate the fertility of green manure crops-incorporated soils.