• Title/Summary/Keyword: Soil carbon stock

Search Result 45, Processing Time 0.032 seconds

Estimation of Change in Soil Carbon Stock of Pinus densiflora Forests in Korea using KFSC Model under RCP 8.5 Climate Change Scenario (한국형 산림토양탄소모델(KFSC Model)을 이용한 RCP 8.5 기후변화 시나리오 하에서의 국내 소나무림 토양탄소 저장량 장기 변화 추정 연구)

  • Park, Chan-woo;Lee, Jongyeol;Yi, Myongjong;Kim, Choonsig;Park, Gwan Soo;Kim, Rae Hyun;Lee, Kyeong Hak;Son, Yowhan
    • Journal of Climate Change Research
    • /
    • v.4 no.2
    • /
    • pp.77-93
    • /
    • 2013
  • Global warming accelerates both carbon (C) input through increased forest productivity and heterotrophic C emission in forest soils, and a future trend in soil C dynamics is uncertain. In this study, the Korean forest soil carbon model (KFSC model) was applied to 1,467,458 ha of Pinus densiflora forests in Korea to predict future C dynamics under RCP 8.5 climate change scenario (RCP scenario). Korea was divided into 16 administrative regions, and P. densiflora forests in each region were classified into six classes by their stand ages : 1 to 10 (I), 11 to 20 (II), 21 to 30 (III), 31 to 40 (IV), 41 to 50 (V), and 51 to 80-year-old (VI+). The forest of each stand age class in a region was treated as a simulation unit, then future net primary production (NPP), soil respiration (SR) and forest soil C stock of each simulation unit were predicted from the 2012 to 2100 under RCP scenario and constant temperature scenario (CT scenario). As a result, NPP decreased in the initial stage of simulation then increased while SR increased in the initial stage of simulation then decreased in both scenarios. The mean NPP and SR under RCP scenario was 20.2% and 20.0% higher than that under CT scenario, respectively. When the initial age class was I, IV, V or VI+, predicted soil C stock under CT scenario was higher than that under RCP scenario, however, the countertrend was observed when the initial age class was II or III. Also, forests having a lower site index showed a lower soil C stock. It suggested that the impact of temperature on NPP was higher when the forests grow faster. Soil C stock under RCP scenario decreased at the end of simulation, and it might be derived from exponentially increased SR under the higher temperature condition. Thus, the difference in soil C stock under two scenarios will be much larger in the further future.

Estimation of Long-term Effects of Harvest Interval and Intensity, and Post-harvest Residue Management on the Soil Carbon Stock of Pinus densiflora Stands using KFSC Model (한국형 산림토양탄소모델(KFSC)을 이용한 수확 주기 및 강도와 수확 후 잔재물 처리방법에 따른 소나무림 토양탄소 저장량의 장기 변화 추정 연구)

  • Park, Chan-Woo;Yi, Koong;Lee, Jongyeol;Lee, Kyeong-Hak;Yi, Myong-Jong;Kim, Choonsig;Park, Gwan-Soo;Kim, Raehyun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.102 no.1
    • /
    • pp.82-89
    • /
    • 2013
  • Harvest is one of the major disturbances affecting the soil carbon (C) dynamics in forests. However, researches on the long-term impact of periodic harvest on the soil C dynamics are limited since they requires rigorous control of various factors. Therefore, we adopted a modeling approach to determine the long-term impacts of harvest interval, harvest intensity and post-harvest residue management on soil C dynamics by using the Korean Forest Soil Carbon model (KFSC model). The simulation was conducted on Pinus densiflora S. et Z. stands in central Korea, and twelve harvest scenarios were tested by altering harvest intervals (50, 80, and 100-year interval), intensities (partial-cut harvest: 30% and clear-cut harvest: 100% of stand volume), and the residue managements after harvest (collection: 0% and retention: 100% of aboveground residue). We simulated the soil carbon stock for 400 years for each scenario. As a result, the soil C stocks in depth of 30 cm after 400 years range from 50.3 to 55.8 Mg C $ha^{-1}$, corresponding to 98.1 to 108.9% of the C stock at present. The soil C stock under the scenarios with residue retention was 2.5-11.0% higher than that under scenarios with residue collection. However, there was no significant impact of harvest interval and intensity on the soil C stock. The soil C dynamics depended on the dead organic matter dynamics derived from the amount of dead organic matter and growth pattern after harvest.

A Comparative Study on Carbon Storage and Physicochemical Properties of Vegetation Soil for Extensive Green Rooftop Used in Korea (국내 저관리 경량형 옥상녹화용 식생기반재의 이화학적 특성 및 탄소고정량 비교 분석)

  • Lee, Sang-Jin;Park, Gwan-Soo;Lee, Dong-Kun;Jang, Seong-Wan;Lee, Hang-Goo;Park, Hwan-Woo
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.18 no.1
    • /
    • pp.115-125
    • /
    • 2015
  • This study was carried out to analyze comparison of carbon storage and physicochemical properties of vegetation soil for extensive green rooftop established at Seoul National University in september 2013. For this study, 42 plots were made by 2 kinds of vegetation soil including A-type and B-type. A-type vegetation soil plots were made of 90% perlite and 10% humus and B-type vegetation soil plots were made of 60% perlite, 20% vermiculite, 10% coco peat and 10% humus. This study used 6 kinds of plants which are Aster koraiensis, Sedum takesimense, Zoysia japonica Steud, Euonymus japonica, Rhododendron indicum SWEET and Ligustrum obtusifolium. Field research was carried out in 11 months after planting. Physiochemical properties of B-type vegetation soil plots were better than A-type vegetation soil plots in every way and soil carbon content was also higher at B-type vegetation soil plots as well. B-type vegetation soil plots were maintained 10 to 20% higher soil water content than A-type vegetation soil plots of the study period. The species of herb which showed the best carbon storage was Zoysia japonica Steud at B-type vegetation soil plots. The species of shrub which showed the best carbon storage was Ligustrum obtusifolium at B-type vegetation soil plots. Plants generally showed better growth at B-type vegetation soil plots and B-type vegetation soil plots were higher than A-type vegetation soil plots in soil carbon stock.

Estimation of the Carbon Stock and Greenhouse Gas Removals by Tree Species and Forest Types in Gangwon Province (강원도 산림의 임상별, 수종별 탄소저장량 및 온실가스 흡수량 산정)

  • Lee, Sun Jeoung;Yim, Jong-Su;Son, Yeong Mo;Kim, Raehyun
    • Journal of Climate Change Research
    • /
    • v.6 no.4
    • /
    • pp.303-310
    • /
    • 2015
  • This study was conducted to estimate of carbon stock and greenhouse gas (GHGs) removals by tree species and forest type at Gangwon province. We used a point sampling data with permanent sample plots in national forest inventory and national emission factors. GHGs emissions was caclulated using the stock change method related to K-MRV and IPCC guidance. Total carbon stock and greenhouse gas removals were high in deciduous forest and species than in coniferous. The range of annual net greenhouse gas emissions in other deciduous species was from $-11,564.83Gg\;CO_2\;yr^{-1}$ to $-13,500.60Gg\;CO_2\;yr^{-1}$ during 3 years (2011~2013). On the other hand, coniferous forest was temporally converted to source due to reducing of growing stock in 2012. It was that growing stocks and forest area were likely to reduce by the deforestation and clear cutting. This study did not consider other carbon pools (soil and dead organic matter) due to the lack of data. This study needs to complement the activity data and emission factors, and then will find the way to calculate the greenhouse gas emissions and removals in the near future.

Organic carbon distribution and budget of dominant woody plant community in the subalpine zone at volcanic Jeju Island, Korea

  • Jang, Rae-Ha;Lee, Seung-Yeon;Lee, Eung-Pill;Lee, Soo-In;Kim, Eui-Joo;Lee, Sang-Hun;You, Young-Han
    • Journal of Ecology and Environment
    • /
    • v.43 no.4
    • /
    • pp.390-399
    • /
    • 2019
  • Background: The Northern Hemisphere forest ecosystem is a major sink for atmospheric carbon dioxide, and the subalpine zone stores large amounts of carbon; however, their magnitude and distribution of stored carbon are still unclear. Results: To clarify the carbon distribution and carbon budget in the subalpine zone at volcanic Jeju Island, Korea, we report the C stock and changes therein owing to vegetation form, litter production, forest floor, and soil, and soil respiration between 2014 and 2016, for three subalpine forest ecosystems, namely, Abies koreana forest, Taxus cuspidata forest, and Juniperus chinensis var. sargentii forest. Organic carbon distribution of vegetation and NPP were bigger in the A. koreana forest than in the other two forests. However, the amount of soil organic carbon distribution was the highest in the J. chinensis var. sargentii forest. Compared to the amount of organic carbon distribution (AOCD) of aboveground vegetation (57.15 t C ha-1) on the subalpine-alpine forest in India, AOCD of vegetation in the subalpine forest in Mt. Halla was below 50%, but AOCD of soil in Mt. Halla was higher. We also compared our results of organic carbon budget in subalpine forest at volcanic island with data synthesized from subalpine forests in various countries. Conclusions: The subalpine forest is a carbon reservoir that stores a large amount of organic carbon in the forest soils and is expected to provide a high level of ecosystem services.

Temporal variation of ecosystem carbon pools along altitudinal gradient and slope: the case of Chilimo dry afromontane natural forest, Central Highlands of Ethiopia

  • Tesfaye, Mehari A.;Gardi, Oliver;Bekele, Tesfaye;Blaser, Jurgen
    • Journal of Ecology and Environment
    • /
    • v.43 no.2
    • /
    • pp.161-182
    • /
    • 2019
  • Quantifying the amount of carbon pools in forest ecosystems enables to understand about various carbon pools in the forest ecosystem. Therefore, this study was conducted in the Chilimo dry afromontane forest to estimate the amount of carbon stored. The natural forest was stratified into three forest patches based on species composition, diversity, and structure. A total of 50 permanent sample plots of 20 m × 20 m (400 ㎡ ) each were established, laid out on transects of altitudinal gradients with a distance of 100 m between plots. The plots were measured twice in 2012 and 2017. Tree, deadwood, mineral soil, forest floor, and stump data were collected in the main plots, while shrubs, saplings, herbaceous plants, and seedling data were sampled inside subplots. Soil organic carbon (SOC %) was analyzed following Walkely, while Black's procedure and bulk density were estimated following the procedure of Blake (Methods of soil analysis, 1965). Aboveground biomass was calculated using the equation of Chave et al. (Glob Chang Biol_20:3177-3190, 2014). Data analysis was made using RStudio software. To analyze equality of means, we used ANOVA for multiple comparisons among elevation classes at α = 0.05. The aboveground carbon of the natural forest ranged from 148.30 ± 115.02 for high altitude to 100.14 ± 39.93 for middle altitude, was highest at 151.35 ± 108.98 t C ha-1 for gentle slope, and was lowest at 88.01 ± 49.72 t C ha-1 for middle slope. The mean stump carbon density 2.33 ± 1.64 t C ha-1 was the highest for the middle slope, and 1.68 ± 1.21 t C ha-1 was the lowest for the steep slope range. The highest 1.44 ± 2.21 t C ha-1 deadwood carbon density was found under the middle slope range, and the lowest 0.21 ± 0.20 t C ha-1 was found under the lowest slope range. The SOCD up to 1 m depth was highest at 295.96 ± 80.45 t C ha-1 under the middle altitudinal gradient; however, it was lowest at 206.40 ± 65.59 t C ha-1 under the lower altitudinal gradient. The mean ecosystem carbon stock density of the sampled plots in natural forests ranged from 221.89 to 819.44 t C ha-1. There was a temporal variation in carbon pools along environmental and social factors. The highest carbon pool was contributed by SOC. We recommend forest carbon-related awareness creation for local people, and promotion of the local knowledge can be regarded as a possible option for sustainable forest management.

Carbon stocks and its variations with topography in an intact lowland mixed dipterocarp forest in Brunei

  • Lee, Sohye;Lee, Dongho;Yoon, Tae Kyung;Salim, Kamariah Abu;Han, Saerom;Yun, Hyeon Min;Yoon, Mihae;Kim, Eunji;Lee, Woo-Kyun;Davies, Stuart James;Son, Yowhan
    • Journal of Ecology and Environment
    • /
    • v.38 no.1
    • /
    • pp.75-84
    • /
    • 2015
  • Tropical forests play a critical role in mitigating climate change, and therefore, an accurate and precise estimation of tropical forest carbon (C) is needed. However, there are many uncertainties associated with C stock estimation in a tropical forest, mainly due to its large variations in biomass. Hence, we quantified C stocks in an intact lowland mixed dipterocarp forest (MDF) in Brunei, and investigated variations in biomass and topography. Tree, deadwood, and soil C stocks were estimated by using the allometric equation method, the line intersect method, and the sampling method, respectively. Understory vegetation and litter were also sampled. We then analyzed spatial variations in tree and deadwood biomass in relation to topography. The total C stock was 321.4 Mg C $ha^{-1}$, and living biomass, dead organic matter, and soil C stocks accounted for 67%, 11%, and 23%, respectively, of the total. The results reveal that there was a relatively high C stock, even compared to other tropical forests, and that there was no significant relationship between biomass and topography. Our results provide useful reference data and a greater understanding of biomass variations in lowland MDFs, which could be used for greenhouse gas emission-reduction projects.

Projected Spatial-Temporal changes in carbon reductions of Soil and Vegetation in South Korea under Climate Change, 2000-2100 (기후변화에 따른 식생과 토양에 의한 탄소변화량 공간적 분석)

  • Lee, Dong-Kun;Park, Chan;Oh, Young-Chool
    • Journal of Korean Society of Rural Planning
    • /
    • v.16 no.4
    • /
    • pp.109-116
    • /
    • 2010
  • Climate change is known to affect both natural and managed ecosystems, and will likely impact on the terrestrail carbon balance. This paper reports the effects of climate change on spatial-temporal changes in carbon reductions in South Korea's during 2000-2100. Future carbon (C) stock distributions are simulated for the same period using various spatial data sets including land cover, net primary production(NPP) and leaf area index (LAI) obtained from MODIS(Moderate Resolution Imaging Spectroradiometer), and climate data from Data Assimilation Office(DAO) and Korea Meteorological Administration(KMA). This study attempts to predict future NPP using multiple linear regression and to model dependence of soil respiration on soil temperature. Plants store large amounts of carbon during the growing periods. During 2030-2100, Carbon accumulation in vegetation was increased to $566{\sim}610gC/m^2$/year owing to climate change. On the other hand, soil respiration is a key ecosystem process that releases carbon from the soil in the form of carbon dioxide. The estimated soil respiration spatially ranged from $49gC/m^2$/year to $231gC/m^2$/year in the year of 2010, and correlating well with the reference value. This results include Spatial-Temporal C reduction variation caused by climate change. Therefore this results is more comprehensive than previous results. The uncertainty in this study is still large, but it can be reduced if a detailed map becomes available.

Woody Plant Species Composition, Population Structure and Carbon Sequestration Potential of the A. senegal (L.) Willd Woodland Along a Distance Gradient in North-Western Tigray, Ethiopia

  • Birhane, Emiru;Gebreslassie, Hafte;Giday, Kidane;Teweldebirhan, Sarah;Hadgu, Kiros Meles
    • Journal of Forest and Environmental Science
    • /
    • v.36 no.2
    • /
    • pp.91-112
    • /
    • 2020
  • In Ethiopia, dry land vegetation including the fairly intact lowland and western escarpment woodlands occupy the largest vegetation resource of the country. These forests play a central role in environmental regulation and socio-economic assets, yet they received less scientific attention than the moist forests. This study evaluated the woody plant species composition, population structure and carbon sequestration potential of the A. senegal woodland across three distance gradients from the settlements. A total of 45 sample quadrants were laid along a systematically established nine parallel transect lines to collect vegetation and soil data across distance gradients from settlement. Mature tree dry biomass with DBH>2.5 cm was estimated using allometric equations. A total of 41 woody plant species that belong to 20 families were recorded and A. senegal was the dominant species with 56.4 IVI value. Woody plant species diversity, density and richness were significantly higher in the distant plots compared to the nearest plots to settlement (p<0.05). The cumulative DBH class distribution of all individuals had showed an interrupted inverted J-shape population pattern. There were 19 species without seedlings, 15 species without saplings and 14 species without both seedlings and saplings. A significant above ground carbon (5.3 to 12.7 ton ha-1), root carbon (1.6 to 3.6 ton ha-1), soil organic carbon (35.6 to 44.5 ton ha-1), total carbon stock (42.5 to 60.7 ton ha-1) and total carbon dioxide equivalent (157.7 to 222.8 ton ha-1) was observed consistently with an increasing of distance from settlement (p<0.05). Distance from settlement had significant and positive correlation with species diversity and carbon stock at 0.64⁎⁎ and 0.78⁎⁎. Disturbance intensity may directly influence the variation of species composition, richness and density along the A. senegal woodland. The sustainability of the A. senegal woodland needs urgent protection, conservation and restoration.

Comparison of Carbon Storage between Forest Restoration of Abandoned Coal Mine and Natural Vegetation Lands (폐탄광 산림복원지와 자연식생지의 탄소저장량 비교)

  • Kim, So-Jin;Jung, Yu-Gyeong;Park, Ki-Hyung;Kim, Ju-Eun;Bae, Jeong-Hyeon;Kang, Won-Seok
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.26 no.5
    • /
    • pp.33-46
    • /
    • 2023
  • In this study, carbon storage in the aboveground biomass, litter layer, and soil layer was calculated for abandoned mining restoration areas to determine the level of carbon storage after the restoration project through comparison with the ecological reference. Five survey sites were selected for each abandoned mining restoration area in Boryeong-si, Chungcheongnam-do, and the ecological reference that can be a goal and model for the restoration project. The carbon storage in the restoration area was 0~21.3Mg C ha-1, the deciduous layer 3.3~6.0Mg C ha-1, and the soil layer(0-30cm) 8.3~35.1Mg C ha-1, showing a significant difference in carbon storage by target site. The total carbon storage was between 6.1 and 35.3% of the ecological reference, with restoration area ranging from 14.0 to 62.4 Mg C ha-1. The total carbon storage in the restoration area and the ecological reference differed the most in the aboveground biomass and was less than 12%. Based on these results, forest restoration area need to improve the carbon storage of forests through continuous management and monitoring so trees can grow and restore productivity in the early stages of the restoration project. The results of this study can be used as primary data for preparing future forest restoration indicators by identifying the storage of abandoned mining restoration areas.