Projected Spatial-Temporal changes in carbon reductions of Soil and Vegetation in South Korea under Climate Change, 2000-2100

기후변화에 따른 식생과 토양에 의한 탄소변화량 공간적 분석

  • Lee, Dong-Kun (Department of Landscape Architecture and Rural System Engineering, Seoul National University) ;
  • Park, Chan (Graduate School of Seoul National University) ;
  • Oh, Young-Chool (Graduate School of Seoul National University)
  • 이동근 (서울대학교 조경.지역시스템공학부) ;
  • 박찬 (서울대학교 대학원) ;
  • 오영출 (서울대학교 대학원)
  • Received : 2010.11.08
  • Accepted : 2010.12.13
  • Published : 2010.12.31

Abstract

Climate change is known to affect both natural and managed ecosystems, and will likely impact on the terrestrail carbon balance. This paper reports the effects of climate change on spatial-temporal changes in carbon reductions in South Korea's during 2000-2100. Future carbon (C) stock distributions are simulated for the same period using various spatial data sets including land cover, net primary production(NPP) and leaf area index (LAI) obtained from MODIS(Moderate Resolution Imaging Spectroradiometer), and climate data from Data Assimilation Office(DAO) and Korea Meteorological Administration(KMA). This study attempts to predict future NPP using multiple linear regression and to model dependence of soil respiration on soil temperature. Plants store large amounts of carbon during the growing periods. During 2030-2100, Carbon accumulation in vegetation was increased to $566{\sim}610gC/m^2$/year owing to climate change. On the other hand, soil respiration is a key ecosystem process that releases carbon from the soil in the form of carbon dioxide. The estimated soil respiration spatially ranged from $49gC/m^2$/year to $231gC/m^2$/year in the year of 2010, and correlating well with the reference value. This results include Spatial-Temporal C reduction variation caused by climate change. Therefore this results is more comprehensive than previous results. The uncertainty in this study is still large, but it can be reduced if a detailed map becomes available.

Keywords

References

  1. 강신규, 김영일, 김영진, 2005. MODIS 총일차생산성 산출물의 오차요인 분석: 입력기상자료의 영향,한국농림기상학회지, 7(2): 171-183.
  2. 김영일, 강신규, 김준, 2007. 입력자료 개선에 의한 MODIS 총일차생산성의 신뢰도 향상, 한국농림기상학회지, 9(2): 132-139.
  3. 이동근, 박찬, 2009 토지이용변화에 따른 식생 및 토양의 이산화탄소 저감잠재량 분석. 한국환경복원녹화기술학회지, 12(2): 95-105.
  4. 이영희, 임희정, 2009. 2006년 광릉 활엽수림에서 순 생태계 탄소 교환량의 모의에 대한 modified Soil-Plant-Atmosphere (mSPA) 모델의 평가, 한국농림기상학회지, 11(3): 87-99.
  5. 이윤영, 문형태, 2001. 상수리나무림의 토양호흡에 관한 연구, 한국생태학회지, 24(3): 141-147.
  6. 임종환, 신준환, 김광택, 천정화, 오정수, 2003. 광릉활엽수천연림의 산림식생구조, 입지환경 및 탄소저장량, 한국농림기상학회지, 5(2): 101-109.
  7. Bellamy, P. H., Loveland, P. J., Bradley, R. I., Lark, R. M., and Kirk, G. J. D. 2005. Carbon losses from all soils across England and Wales 1978-2003. Nature 437, 245-248. https://doi.org/10.1038/nature04038
  8. Bottner, P., Couteaux, M.M., Vallejo, V.R., 1995. Soil organic matter in Mediterranean-type ecosystems and global climate changes: a case study-the soils of the Mediterranean Basin. In: Moreno, J.M., Oechel, W.C. (Eds.), Global Change and Mediterranean Type Ecosystcms. Springer-Verlag, New York, 306-325.
  9. Elias EA., Cíchota R., Torriani HH., and Lier QJ., 2004. Analytical soil-temperature model: Correction for temporal variation of daily amplitude Soil Science Society of America, 68: 784-788.
  10. Heinsch, F. A., M. Reeves, P. Votava, S. Kang, C. Milesi,M. Zhao, 2003: User's guid. GPP and NPP (MOD17A2/A3) products, NASA MODIS Land Algorithm 1-57.
  11. Lal, R. 2004. Soil carbon sequestration impacts on global climate change and food security. Science 304, 1623-1627. https://doi.org/10.1126/science.1097396
  12. Parshotam A., Saggar S., Tate K., and Parfitt R. 2001. Modelling organic atter dynamics in New Zealand soils, Environment International, 27: 111-119. https://doi.org/10.1016/S0160-4120(01)00070-8
  13. Rounsevell, M. D. A., Ewert, F., Reginster, I., Leemans, R. and Carter, T. R. 2005. Future scenarios of European agricultural land use. II. Projecting changes in cropland and grassland, Agriculture Ecosystem and Environment, 107(1-2): 117-135.
  14. Running, S. W., D. Baldocchi, D. Turner, S. T. Gower, P. Bakwin, and K. Hibbard, 1999: A global terrestrial monitoring network integrating tower fluxes, flask sampling, ecosystem modeling and EOS satellite data. Remote Sensing of Environment 70, 108-127. https://doi.org/10.1016/S0034-4257(99)00061-9
  15. Schwaiger HP., and Bird DN. Integration of albedo effects caused by land use change into the climate balance: Should we still account in greenhouse gas units? Forest Ecology and Management(in press).
  16. Smíth, J. U., Smith, P., Wattenbach, M., Zaehle, S., Hiederer, R., Jones, R. J. A., Montanarella, L., Rounsevell, M. D. A., Reginster, I. and Ewert, F. 2005. Projected changes in mineral soil carbon of European croplands and grasslands, 1990-2080, Global Change Biology, 11(12): 2141-2152. https://doi.org/10.1111/j.1365-2486.2005.001075.x
  17. Smith, P., Fang, C., Dawson, J.J.C., Moncrieff, J. B. 2008. Impact of Global Warming on Soil Organic Carbon, Advances in Agronomy, 97: 1-43. https://doi.org/10.1016/S0065-2113(07)00001-6
  18. Zhao S., Liu S., Yin R., Li Z., Deng Y., Tan K , Deng X., Rothstein D., Qi J. 2010. Quantifying Terrestrial Ecosystem Carbon Dynamics in the Jinsha Watershed, Upper Yangtze, China from 1975 to 2000, Environmental Management, 45(3): 466-475. https://doi.org/10.1007/s00267-009-9285-9