• 제목/요약/키워드: Soil carbon sequestration

검색결과 97건 처리시간 0.022초

논토양에서 퇴비시용 및 경운이 토양탄소 축적과 안정화에 미치는 영향 (Effect of Compost and Tillage on Soil Carbon Sequestration and Stability in Paddy Soil)

  • 홍창오;강점순;신현무;조재환;서정민
    • 한국환경과학회지
    • /
    • 제22권11호
    • /
    • pp.1509-1517
    • /
    • 2013
  • So far, most studies associated with soil carbon sequestration have been focused on long term aspect. However, information regarding soil carbon sequestration in short term aspect is limited. This study was conducted to determine changes of soil organic carbon content and stability of carbon in response to compost application rate and tillage management during rice growing season(150 days) in short term aspect. Under pot experiment condition, compost was mixed with an arable soil at rates corresponding to 0, 6, 12, and 24 Mg/ha. To determine effect of tillage on soil carbon sequestration, till and no-till treatments were set up in soils amended with application rate of 12 Mg/ha. Compost application and tillage management did not significantly affect soil organic carbon(SOC) content in soil at harvest time. Bulk density of soil was not changed significantly with compost application and tillage management. These might result from short duration of experiment. While hot water extractable organic carbon(HWEOC) content decreased with compost application, humic substances(HS) increased. Below ground biomass of rice increased with application of compost and till operation. From the above results, continuos application of compost and reduce tillage might improve increase in soil organic carbon content and stability of carbon in long term aspect.

토양탄소격리를 위한 바이오차 (Biochar for soil carbon sequestration)

  • 우승한
    • 청정기술
    • /
    • 제19권3호
    • /
    • pp.201-211
    • /
    • 2013
  • 바이오차는 바이오매스를 이용하여 산소가 없는 환경에서 열분해할 때 만들어지는 탄소함량이 높은 고체 물질이다. 바이오차의 탄소격리, 재생 에너지, 폐기물 관리, 농업 생산성 개선, 환경복원 관점에서의 중요한 기능으로 인해 최근에 크게 주목을 받고 있다. 바이오차는 토양에서 수천 년간 안정적으로 보존될 수 있기 때문에, 결국에는 분해될 수 밖에 없어 탄소중립이라 불리는 바이오매스 에너지와는 달리 탄소 네가티브의 특징을 가지고 있다. 게다가 바이오차를 토양에 적용하면 바이오차의 높은 pH와 물 및 영양분의 우수한 보유능으로 인해 농업 생산성이 크게 개선될 수 있다. 본 논문은 바이오차의 탄소격리 원리와 물리화학적 특징, 농업 및 환경에의 적용과 관련된 최근의 연구 동향을 총설하여 기술하고자 한다.

탄소흡수원을 고려한 개발사업 환경영향평가 방안(I) - 태양광발전소 건설사업 사례를 중심으로 - (Environmental Impact Assessment for Development Projects Considering Carbon Sink and Sequestration(I) - Focused on a Solar Power Plant Development Project -)

  • 황상일;박선환
    • 환경영향평가
    • /
    • 제19권6호
    • /
    • pp.625-631
    • /
    • 2010
  • The objective of this work was to investigate how carbon sink and sequestration of vegetation and soil in the development project area can impact the land use plan, in addition to carbon emission capacity of the development project when we conduct environmental impact assessment. Especially, we did this work for a development project of solar power plant which would be constructed in forest area. Through this work, we found that 1) the amount of carbon sink and sequestration largely decreased due to reduction of the green area, 2) in terms of carbon sink and sequestration, conservation of natural green area is better than construction of newly vegetated area, 3) biochar application into soil can become an alternative for increase of carbon sink, and 4) even though a solar power production does hugely reduce carbon emissions and offset the carbon sink and sequestration capacity from the forest, it is necessary to consider the public value of the forest(reduction of heat island, habitat etc.) in siting for development area.

The evaluation for soil carbon sequestration with rice straw treatments in paddy fields

  • Seo, Myung-Chul;Cho, Hyeon-Suk;Seong, Ki-Yeong;Kim, Min-Tae;Ryu, Jin-Hee;Lee, Geon Hwi
    • 한국작물학회:학술대회논문집
    • /
    • 한국작물학회 2017년도 9th Asian Crop Science Association conference
    • /
    • pp.340-340
    • /
    • 2017
  • Rice straw is very important to maintain fertility in agricultural soil with several aspects such as carbon and nitrogen cycles in Korea. Recently, concerning about climate change, carbon sequestration in agricultural land has become one of the most interesting and debating issues. Rice straw is most representative source of organic material produced in agricultural sectors. In order to evaluate changes of soil carbon treated by rice straw during cultivating rice in paddy field, we carried out to treat rice straw with 0, 0.5, 1, 1.5, and $2.0ton\;ha^{-1}$ at $50{\times}50{\times}20cm$ blocks made of wood board, and analyze contents of fulvic acid and humic acid form, and total carbon periodically. The experiment was conducted in 2013-2016, and sampled with interval in a month. The organic material was applied to treatment blocks in 2 weeks ago in rice transplanting of each year. Total carbon in beginning time is low as $7.9g\;kg^{-1}$. The contents of total carbon with treatments of rice straw after experiment are recorded as 8.7, 11.2, 9.5, 10.5, and $10.9g\;kg^{-1}$ applied by 0, 0.5, 1, 1.5, and $2.0ton\;ha^{-1}$, respectively. When trend lines were calculated on changes of soil carbon in periods of experiments, The trend equations of soil carbon changes with treatments of 0, 0.5, 1, 1.5, and $2.0ton\;ha^{-1}$ were Y=0.0015X+8.479, Y=0.073X+8.2577, Y=0.0503X+8.4477, Y=0.0822X+8.2103, and Y=0.082X+8.5736. These trends suggested several results. When rice straw was applied in cultivating paddy fields, most carbon in rice straw would be decomposed regardless the amount of rice straw in soil. We calculated sequestration rate of applied rice straw as about 0.1% per year during rice cultivation in paddy fields. It means that if farmer want to increase 1% soil organic matter by using application of rice straw returned after cultivation, famer should apply rice straw continuously for ten years. The change of soil carbon as fulvic acid, humic acid, and humane is showed that only content of carbon as mumine is increased significantly while fulvic acid and humic acid were changed in range of 10 to 30% among total carbon in soil. In conclusion, to sequestrate soil carbon with rice straw, it is important for rice straw to apply continuously every year. The amount of rice straw applied is not much effected to increase soil organic matter.

  • PDF

수질 환경을 고려한 농경지 토양 탄소 관리 방안 (Agricultural Soil Carbon Management Considering Water Environment)

  • 이경숙;윤광식;최동호;정재운;최우정;임상선
    • 환경영향평가
    • /
    • 제22권1호
    • /
    • pp.1-17
    • /
    • 2013
  • Carbon sequestration on soil is one of the counter measurements against climate change in agricultural sector. Increasing incorporation of organic fertilizer would increase soil organic carbon (SOC) but it could bring high potential of nutrient losses which would result in water quality degradation. In this paper, literature review on soil organic carbon behavior according to agricultural management is presented. The results of field experiment to identify the effect of organic and commercial fertilizer applications on SOC and runoff water quality were also presented. Field experiment confirmed increased SOC and nutrient concentrations in runoff water as application rate of organic fertilizer increase. The potential use of simulation model to develop best agricultural management practice considering carbon sequestration and water quality conservation at the same time is discussed and monitoring and modeling strategies are also suggested to achieve the goal.

Carbon Sequestration of Teak (Tectona grandis Linn. f.) Plantations in the Bago Yoma Region of Myanmar

  • Oo, Thaung Naing;Lee, Don Koo;Combalicer, Marilyn
    • 한국산림과학회지
    • /
    • 제96권5호
    • /
    • pp.602-608
    • /
    • 2007
  • Forest plantations become important strategy not merely for the financial aspect, but for carbon sequestration and ecosystem stability. Forest plantations increase the density of the forest biomass, which reduce the increase in atmospheric carbon dioxide. Biomass density is also a useful variable for comparing structural and functional attributes of forest ecosystems across a wide range of environmental conditions. In this study, carbon sequestration of teak (Tectona grandis Linn. f.) in the individual tree and plantation levels estimation was carried out Site-specific allometric equation for the estimation of teak tree biomass was developed based on the direct measurement of fifteen (15) harvested trees in the Oak-twin Township of the Bago Yoma Region, Myanmar. A regression equation of the diameter at breast height (DBH) and the aboveground biomass (carbon content) was constructed to estimate the carbon storage level of plantations, which averaged 79 ton/ha. The average carbon accumulation in the soil (up to 30 cm in depth) was estimated 38.89 ton/ha, The highest mean annual increment (MAI) of total carbon was found in the 6-yr-old teak plantation (12.10 ton/ha/yr) whereas the lowest MAI was in the 26-yr-old teak plantation (4.31 ton/ha/yr).

Comparison of Carbon Sequestration Potential of Winter Cover Crop Cultivation in Rice Paddy Soil

  • Lee, Seul-Bi;Haque, Mozammel;Pramanik, Prabhat;Kim, Sang-Yoon;Kim, Pil-Joo
    • 한국환경농학회지
    • /
    • 제30권3호
    • /
    • pp.234-242
    • /
    • 2011
  • BACKGROUND: Cultivation of winter cover crops is strongly recommended to increase land utilization efficiency, animal feeding material self-production, and to improve soil and environmental quality. METHODS AND RESULTS: Four major winter crops (barley, Chinese milk vetch, hairy vetch, and rye) having different C/N ratio were seeded in silt loam paddy soil in the November 2007 and the aboveground biomass was harvested on the late May 2008 to evaluate its effectiveness as green manure, and root biomass distribution was characterized at the different depth (0-60 cm) to study its effect on physical properties and carbon sequestration in soil. During this experiment, the naturally growing weed in the rice paddy soil in Korea, short awn foxtail (Alopecurus aequalis Sobol), was considered as control treatment. Above-ground biomass of all cover crops selected was significantly higher than that of the control treatment (2.8 Mg/ha). Comparatively higher above-ground biomass productivity of rye and barley (15.8 and 13.5 Mg/ha, respectively) suggested that these cover crops possibly had the highest potential as a green manure and animal feeding material. Root biomass production of different cover crops followed the same trend as that for their above ground biomass. Rye (Secale cereal) might have the highest potential for soil C accumulation (7893 C kg/ha) by root biomass development, and then followed by barley (6985 C kg/ha), hairy vetch (6467 C kg/ha), Chinese milk vetch (6671 C kg/ha), and control (5791 C kg/ha). CONCLUSION(s): Cover crops like rye and barley having high biomass productivity might be the most effective winter cover crops to increase organic carbon distribution in different soil aggregates which might be beneficial to improve soil structure, aeration etc. and C sequestration.

탄소흡수원을 고려한 개발사업 환경영향평가 방안(III) - 보금자리주택 사업을 중심으로 - (Environmental Impact Assessment for Development Projects Considering Carbon Sink and Sequestration(III) - Focused on a Bogeumjari Housing Project -)

  • 황상일;박선환
    • 환경영향평가
    • /
    • 제20권2호
    • /
    • pp.235-248
    • /
    • 2011
  • In this study, we investigated the effect of carbon sequestration and sink on the environmental impact assessment of a Bogeumjari Housing Project. Through the case study, we found that, if the project is implemented, the amount of carbon stock tends to decrease greatly while as the amount of the carbon emission tends to greatly increase. Furthermore, we found that the future land use should be planned in detail in order to maintain the soil carbon stock prior to development. Also, enlargement of undeveloped forest land area would be more efficient than that of newly planted area in terms of carbon sequestration.

Cations of Soil Minerals and Carbon Stabilization of Three Land Use Types in Gambari Forest Reserve, Nigeria

  • Falade, Oladele Fisayo;Rufai, Samsideen Olabiyi
    • Journal of Forest and Environmental Science
    • /
    • 제37권2호
    • /
    • pp.116-127
    • /
    • 2021
  • Predicting carbon distribution of soil aggregates is difficult due to complexity in organo-mineral formation. This limits global warming mitigation through soil carbon sequestration. Therefore, knowledge of land use effect on carbon stabilization requires quantification of soil mineral cations. The study was conducted to quantify carbon and base cations on soil mineral fractions in Natural Forest, Plantation Forest and Farm Land. Five 0.09 ha were demarcated alternately along 500 m long transect with an interval of 50 m in Natural Forest (NF), Plantation Forest (PF) and Farm Land (FL). Soil samples were collected with soil cores at 0-15, 15-30 and 30-45 cm depths in each plot. Soil core samples were oven-dried at 105℃ and soil bulk densities were computed. Sample (100 g) of each soil core was separated into >2.0, 2.0-1.0, 1.0-0.5, 0.5-0.05 and <0.05 mm aggregates using dry sieve procedure and proportion determined. Carbon concentration of soil aggregates was determined using Loss-on-ignition method. Mineral fractions of soil depths were obtained using dispersion, sequential extraction and sedimentation methods of composite soil samples and sieved into <0.05 and >0.05 mm fractions. Cation exchange capacity of two mineral fractions was measured using spectrophotometry method. Data collected were analysed using descriptive and ANOVA at α0.05. Silt and sand particle size decreased while clay increased with increase in soil depth in NF and PF. Subsoil depth contained highest carbon stock in the PF. Carbon concentration increased with decrease in aggregate size in soil depths of NF and FL. Micro- (1-0.5, 0.5-0.05 and <0.05 mm) and macro-aggregates (>2.0 and 2-1.0 mm) were saturated with soil carbon in NF and FL, respectively. Cation exchange capacity of <0.05 mm was higher than >0.05 mm in soil depths of PF and FL. Fine silt (<0.05 mm) determine the cation exchange capacity in soil depths. Land use and mineral size influence the carbon and cation exchange capacity of Gambari Forest Reserve.

혐기조건에서 석탄바닥재가 토양호흡량 및 미생물 생체량에 미치는 영향 (Effects of Bottom Ash Amendment on Soil Respiration and Microbial Biomass under Anaerobic Conditions)

  • 박종찬;정덕영;한광현
    • 한국토양비료학회지
    • /
    • 제45권2호
    • /
    • pp.260-265
    • /
    • 2012
  • 담수 토양에서의 토양호흡량은 호기 상태에 비해 매우 낮은 수준이나, 혐기 상태에서의 유기물의 분해는 담수 생태계의 탄소순환에 매우 중요한 역할을 한다. 한편, 비산회(fly ash), 석탄바닥재 (bottom ash)와 같은 석탄 연료 부산물들은 이산화탄소 발생을 저감하고 토양 탄소를 격리하는 효과가 있음이 보고된 바 있다. 이에 본 연구는 혐기조건 토양에서 석탄바닥재 단일 처리 및 석탄바닥재와 유기물 혼합 처리가 토양 미생물 호흡량 및 미생물 생체량 변화에 미치는 영향을 조사하였다. 이산화탄소 발생속도는 석탄바닥재 처리에 의해 유의하게 감소하였고, 처리수준에 따라서도 감소하는 것을 보였다. 유기물과 석탄바닥재를 혼합 처리하였을 때에도 발생속도가 감소되는 것을 확인하였다. 석탄바닥재 처리에 따라 토양미생물 생체량은 유의하게 증가하였고, 토양 중 암모니아태 질소, 질산태 질소, 유효인의 함량은 감소하는 경향이 있었다.