• Title/Summary/Keyword: Soil box test

Search Result 142, Processing Time 0.026 seconds

Uniform large scale cohesionless soil sample preparation using mobile pluviator

  • Jamil, Irfan;Ahmad, Irshad;Ullah, Wali;Junaid, Muhammad;Khan, Shahid Ali
    • Geomechanics and Engineering
    • /
    • v.28 no.5
    • /
    • pp.521-529
    • /
    • 2022
  • This research work deals with the development of air pluviation method for preparing uniform sand specimens for conducting large scale laboratory testing. Simulating real field conditions and to get reliable results, air pluviation method is highly desirable. This paper presents a special technique called air pluviation or sand raining technique for achieving uniform relative density. The apparatus is accompanied by a hopper, shutters with different orifice sizes and numbers and set of sieves. Before using this apparatus, calibration curves are drawn for relative density against different height of fall (H) and shutter sizes. From these calibration curves, corresponding to the desired relative density of 60%, the shutter size of 13mm and height of fall of 457.2 mm, are selected and maintained throughout the pluviation process. The density obtained from the mobile pluviator is then verified using the Dynamic Cone Penetrometer (DCP) test where the soil is poured in the box using defined shutter size and fall height. The results obtained from the DCP test are averaged as 60±0.5 which was desirable. The mobile pluviator used in this research is also capable of obtaining relative densities up to 90%. The instrument is validated using experimental and numerical approach. In numerical study, Plaxis 3D software is used in which the soil mass is defined by 10-Node tetrahedral elements and 6-Node plate is used to simulate plate behavior in the validation phase. The results obtained from numerical approach were compared with that of experimental one which showed very close correlation.

A Study on the layer construction for vegetation using industrial wastes (산업폐기물을 활용한 식생기반 조성에 관한 연구)

  • Yu, Chan;Yang, Ki-Suk;Ryu, Si-Chang;Cho, Byung-Jin;Ahn, Byung-Kwan
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2003.10a
    • /
    • pp.219-222
    • /
    • 2003
  • Bech scale tests were performed to evaluate the adaptability of industrial wastes, especially bottom ash, salg and phosphogypsum among others, for constructing the surface layer of a landfill or reclamation, which function is a vegetation base layer. In the test, columes test were used to check the extraction characteristics of wastes and small PVC soil-box that equipped the drainage device was used to model a performance of layers and to monitor the growth of plants at the composite layer of those. Tests have been continued during one and half year and It has been verified that bottom ash and phosphogypsum look like as a valuable material to safely reuse as the vegetation base layer even though some unconfined factors are remain.

  • PDF

The Effects of Negative Pressure on Horizontal Drain Method (수명배수공법에 있어서 부압의 영향에 관한 실험적 연구)

  • 김정기;김지용;정승용;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.551-558
    • /
    • 2001
  • The horizontal drain method is one of methods improving reclamation ground. This method reduces consolidation time by using drained installed horizontally, and negative pressure is applied on end of these drains by vacuum pump. But, effective negative pressure still wasn't evaluated in applying this method to reclamation ground. To estimate optimum negative pressure, soil box test that make a model the in-situ by installing horizontal drains in the center is performed pressing different vacuum pressure In the laboratory, and the variations in settlement and volume of drained water through the drains during consolidation process were measured. Also, water content with distance from drain and with depth is measured after the test.

  • PDF

Characteristics of Developed Earth Pressure by Backfill Compaction (뒷채움 시공시의 다짐토압 특성)

  • 노한성
    • Journal of the Korean Geotechnical Society
    • /
    • v.17 no.6
    • /
    • pp.163-171
    • /
    • 2001
  • It is important to pay careful attention to the backfill construction for the structural integrity of concrete box culvert. To increase the structural integrity of culvert good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials. However structural distress of the culvert could be occurred due to the excessive earth pressure by great dynamic compaction load. In this study, two box culverts were constructed with change compaction materials and construction methods. Two type of on-site soils such as subbase and subgrade materials were used as backfill materials. In most case, dynamic compaction rollers with 11 to 12 ton weights were used and vibration frequency were applied from 2000 to 2500 rpm for the great compaction energy. Backfill compactions with good quality soils were carried out to examine the effect of cushions on dynamic lateral soil pressure. Expanded polystyrene (EPS) and rubber of tire were adapted as cushion materials and they are set on the culverts before backfill construction. This paper presents the main results on the characteristics of dynamic earth pressures. Test result indicates that the amounts of increased dynamic pressures are affected with backfill materials, depth of pressure cell, and compaction condition. The earth pressure during compaction can give harmful effect to box culvert because the value of dynamic earth pressure coefficient $(\DeltaK_{dyn}=\DeltaK\sigma_h\DeltaK\sigma_v)$ during compaction is greater than that of static condition. It was observed that cushion panels of EPS(t=10cm) and rubber(t=5cm) are effective to mitigate dynamic lateral pressure on the culverts.

  • PDF

An Experimental Study on the Application of End-Expanded Soil Nailing Method (선단확장식 소일네일링 공법의 적용성에 관한 실험적 연구)

  • Lee, Sang-Eun;Jang, Yun-Ho;Moon, Chang-Yeul;Jeong, Gyo-Cheol;Park, Young-Sun
    • The Journal of Engineering Geology
    • /
    • v.17 no.4
    • /
    • pp.525-534
    • /
    • 2007
  • The peculiarity of end-expanded soil nailing method(EESNM) is in fixing the wedge-type steel body spreaded by collars and grouting its surroundings by cement milk within soils, after extending hole bottom over drilling hole diameter with top drill bit. The present study was done to establish the effect of this method. Laboratory model test were carried out to investigate the behavior characteristics with the performance of the pull-out test and failure experiment, after preparing soil test box having 1,300mm length, width 1,000mm, and height 1,100mm, and the same experimental condition was set up to compare with the general soil nailing method(GSNM). The pull-out force of about 23 percentage was increased, and the horizontal displacements 1.2 from 9.1 percentage in soil-nailed wall decreased in EESNM compare with GSNM. The axial force acting on nail increased considerably at load level over 7 ton in EESNM and 5 ton in GSNM. The predicted failure line from the maxima analyzed by axial tensile strain located at long distance from soil-nailed wall in EESNM. The EESNM demonstrated the superiority of reinforcement effect in comparison with GSNM from the results above mentioned.

Measurement of Soil Deformation around the Tip of Model Pile by Close-Range Photogrammetry (근접 사진측량에 의한 모형말뚝 선단부 주변의 지반 변형 측정)

  • Lee, Chang No;Oh, Jae Hong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.31 no.2
    • /
    • pp.173-180
    • /
    • 2013
  • In this paper, we studied on measurement of soil deformation around the tip of model pile by close-range photogrammetry. The rigorous bundle adjustment method was utilized to monitor the soil deformation in the laboratory model pile-load test as function of incremental penetration of the pile. Control points were installed on the frame of the laboratory model box case and more than 150 target points were inserted inside the soil around the model pile and on the surface. Four overlapping images including three horizontal and one vertical image were acquired by a non-metric camera for each penetration step. The images were processed to automatically locate the control and target points in the images for the self-calibration and the bundle adjustment. During the bundle adjustment, the refraction index of the acrylic case of the laboratory model was accounted for accurate measurement. The experiment showed the proposed approach enabled the automated photogrammetric monitoring of soil deformation around the tip of model pile.

Dynamic Earth Pressure of Concrete Culverts During Compaction of Backfill (콘크리트 암거에서의 뒷채움 다짐에 의한 동적토압)

  • 노한성;최영철;김성환
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.435-440
    • /
    • 2000
  • It is important to pay careful attention to construction backfill for the structural integrity of concrete box culvert. The stability of the surrounding soil is important to the structural performance of most culverts. Good compaction by the dynamic compaction roller with big capacity is as effective as good backfill materials to increase the structural integrity of culvert. However structural distress of the culvert could be occur due to the excessive earth pressure by dynamic compaction load. In this study, 16 box culverts were constructed with various compaction materials and construction methods. Three types of on-site soils such as subbase, subgrade and roadbed materials were used as backfill materials in the test program. Compaction methods were adapted based on the site conditions. In most cases, dynamic compaction rollers with 10 to 16 ton weights were used and vibration speed were applied from 2400 to 2500 rpm for the great compaction energy. Some backfill compactions with good quality soils were carried out to examine the effect of EPS(Expanded Polystyrene) panels with changes of compaction thickness. This paper presents the main results of the research conducted to access the engineering performance of the backfill materials. The characteristics of earth pressures are discussed. It is observed that subgrade and roadbed materials are needed more careful compaction than subbase materials. It is shown that EPS panels are effective to mitigate dynamic lateral earth pressure on the culverts. It is also obtained that the dynamic pressure depends on the soil properties. In addition, the coefficient of dynamic earth pressure (K$\sub$dyn/=ΔP$\sub$H/ ΔP$\sub$V/) during compaction is discussed.

  • PDF

Model Experiment for Evaluating Internal Erosion Resistance Around Embankment Box-culvert Using Biopolymer T reated Soil (바이오폴리머 혼합토를 활용한 제방 통문 주위 내부침식 저항성 평가를 위한 모형실험)

  • Kim, Minjin;Moon, Junho;Kim, Chanhee;Kim, Younguk
    • Journal of the Korean GEO-environmental Society
    • /
    • v.22 no.12
    • /
    • pp.65-70
    • /
    • 2021
  • River-side Embankment collapse involves various causes. The embankment collapse due to internal erosion around embedded structures reaches up to more than 10% in Korea. Many studies are being attempted to prevent from the collapse of the embankment rooted from overtopping and instability as well as internal erosion. One of them is the study on the application of biopolymers. The application of biopolymers to soils are divided into enhancing strength, vegetation and erosion resistance. This study investigated the effect of biopolymer treated soil on erosion resistance. The main goal of the study is to obtain basic data for real-scale experiments to verify the effectiveness of biopolymer treated soil embankment including a review of the collapse pattern in the model embankment with various test conditions. The optimized experimental conditions were selected by examining the erosion patterns according to each induction path with three compaction degree of the model embankment. As a result of the experiment, the internal erosion rate in the embankment to which the biopolymer treated soil was applied is greatly reduced, and it could be concluded that it might be applied to the actual embankment. However, in this study, the conclusion was drawn only within the scaled-down model embankment. In order to practically apply the biopolymer treated soil to the embankment, the study considering the scale effect would be needed.

Dynamic Centrifuge Tests for Evaluating the Earthquake Load of the Structure on Various Foundation Types (다양한 기초 형식에 따른 단자유도 구조물 지진하중 평가를 위한 동적 원심모형실험)

  • Ha, Jeong Gon;Jo, Seong Bae;Park, Heon Joon;Kim, Dong Kwan;Kim, Dong Soo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.5
    • /
    • pp.285-293
    • /
    • 2016
  • Soil-foundation-structure interaction (SFSI) is one of the important issues in the seismic design for evaluating the exact behavior of the system. A seismic design of a structure can be more precise and economical, provided that the effect of SFSI is properly taken into account. In this study, a series of the dynamic centrifuge tests were performed to compare the seismic response of the single degree of freedom(SDOF) structure on the various types of the foundation. The shallow and pile foundations were made up of diverse mass and different conjunctive condition, respectively. The test specimen consisted of dry sand deposit, foundation, and SDOF structure in a centrifuge box. Several types of earthquake motions were sequentially applied to the test specimen from weak to strong intensity of them, which is known as a stage test. Results from the centrifuge tests showed that the seismic responses of the SDOF structure on the shallow foundation and disconnected pile foundation decreased by the foundation rocking. On the other hand, those on the connected pile foundation gradually increased with intensity of input motion. The allowable displacement of the foundation under the strong earthquake, the shallow and the disconnected pile foundation, have an advantage in dissipating the earthquake energy for the seismic design.

A Study on Improvement of Marine Clay through the Leaching Effect of Electrolyte Reaction in Electrode (전극의 전기분해 용출을 통한 해성점토의 개량에 관한 연구)

  • Han, Sang-Jae;Kim, Soo-Sam;Kim, Jong-Yun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.2C
    • /
    • pp.89-98
    • /
    • 2006
  • In this study, the iron and aluminium electrode was put in marine clay which was taken from south coast in Korea to increase the undrained shear strength by inducing the densification and cementation between clay particles and precipitation which was developed by electrode decomposition. For raising the cementation rate and reducing treatment time, high electric current( 2.5A) was applied in each electrode at semi-pilot scale soil box with marine clay. After the tests, the undrained shear strength was measured at designated points using cone penetration test device and sampling was conducted simultaneously in order to measure water content, pH and electric conductivity which would be the key for configuring the cementation effects indirectly. The iron electrode decomposition test results show that the water content adjacent to anode section decreased in 35% and increased in 13% at cathode section. The measured shear strength however, was increased considerably comparing to initial shear strength because of cementation effect between iron ions and soil particles. In case of aluminium electrode decomposition test, the distribution of measured shear strength and degree of improvement were more homogeneous than iron electrode decomposition test.