• Title/Summary/Keyword: Soil box test

Search Result 142, Processing Time 0.028 seconds

Use of large-scale shake table tests to assess the seismic response of a tunnel embedded in compacted sand

  • Zhou, Hao;Qin, Xiaoyang;Wang, Xinghua;Liang, Yan
    • Earthquakes and Structures
    • /
    • v.15 no.6
    • /
    • pp.655-665
    • /
    • 2018
  • Shield tunnels are widely used throughout the world. However, their seismic performance has not been well studied. This paper focuses on the seismic response of a large scale model tunnel in compacted sand. A 9.3 m long, 3.7 m wide and 2.5 m high rigid box was filled with sand so as to simulate the sandy soil surrounding the tunnel. The setup was excited on a large-scale shake table. The model tunnel used was a 1:8 scaled model with a cross-sectional diameter of 900 mm. The effective shock absorbing layer (SAL) on the seismic response of the model tunnel was also investigated. The thickness of the tunnel lining is 60 mm. The earthquake motion recorded from the Kobe earthquake waves was used. The ground motions were scaled to have the same peak accelerations. A total of three peak accelerations were considered (i.e., 0.1 g, 0.2 g and 0.4 g). During the tests, the strain, acceleration and soil pressure on the surface of the tunnel were measured. In order to investigate the effect of shock absorbing layer on the dynamic response of the sand- tunnel system, two tunnel models were set up, one with and one without the shock absorbing layer of foam board were used. The results shows the longitudinal direction acceleration of the model tunnel with a shock absorbing layer were lower than those of model tunnel without the shock absorbing layer, Which indicates that the shock absorbing layer has a beneficial effect on the acceleration reduction. In addition, the shock absorbing layer has influence on the hoop strain and earth pressure of the model tunnel, this the effect of shock absorbing layer to the model tunnel will be discussed in the paper.

Experimental Study on Adfreeze Bond Strength Between Frozen Sand and Aluminium with Varying Freezing Temperature and Vertical Confining Pressure (동결온도와 수직구속응력 변화에 따른 모래와 알루미늄 재료의 접촉면에서 작용하는 동착강도 실험 연구)

  • Ko, Sung-Gyu;Choi, Chang-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.9
    • /
    • pp.67-76
    • /
    • 2011
  • Bearing capacity of pile foundations in cold region is dominated by adfreeze bond strength between surrounding soil and pile perimeter. Adfreeze bond strength is considered to be the most important design parameter for foundations in cold region. Many studies in last 50 years have been conducted to analyze characteristics of adfreeze bond strength. However, most studies have been performed under constant temperature and normal stress conditions in order to analyze affecting factors like soil type, pile material, loading speed, etc. In this study, both freezing temperature and normal stress acting on pile surface were considered to be primary factors affecting adfreeze bond strength, while other factors such as soil type, pile material and loading speed were predefined. Direct shear box was used to measure adfreeze bond strength between Joomoonjin sand and aluminium because it is easy to work for various roughness. Test was performed with temperatures of > $0^{\circ}C$, $-1^{\circ}C$, $-2^{\circ}C$, $-5^{\circ}C$, and $-10^{\circ}C$ and vertical confining pressures of 1atm, 2atm, and 3atm. Based on the test results, the effects of temperature and vertical stress on adfreeze bond strength were analyzed. The test results showed that adfreeze bond strength increases with decreased temperature and increased vertical stress. It was also noted that two types of distinct sections exist, owing to the rate of increase of adfreeze bond strength along the change of freezing temperature: 1)rapidly increasing section and 2)gradually decreasing section. In addition, the results showed that a main factor affecting adfreeze bond strength switches from friction angle to adhesion as freezing temperature decreases.

Geotechnical Characteristics of Prefabricated Vertical Drain System for Contaminated Soil Remediation (오염토양 복원을 위한 연직배수시스템의 지반공학적 특성)

  • Shin, Eunchul;Park, Jeongjun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.5
    • /
    • pp.5-14
    • /
    • 2007
  • The quantity of noxious wastes generated by the growth in industrialization and population in all over the world and its potential hazards in subsurface environments are becoming increasingly significant. The extraction of the contaminant from the soil and movement of the water are restricted due to the low permeability and adsorption characteristics of the reclaimed soils. Incorporated technique with PVDs have been used for dewatering from fine-grained soils for the purpose of ground improvement by means of soil flushing and soil vapor extraction systems. This paper is to evaluate several key parameters that affected to the performance of the PVDs specifically with regard to: well resistance of PVD, zone of influence, and smear effects. In the feasibility of contaminant remediation was evaluated in pilot-scale laboratory experiments. Well resistance is affected on the vertical discharge capacity of the PVDs under the various vacuum pressures. The discharge capacity increases consistently in areal extents with higher applied vacuum up to a limiting vacuum pressure. The head values for each piezometer at different vacuum pressures show that the largest head loss occurs within 14 cm of the PVD. Air flow rates and head losses were measured for the PVD placed in the model test box and the gas permeability of the silty soils was calculated. Increasing the equivalent diameter results in a decrease in the calculated gas permeability. It is concluded that the gas permeability determined over the 1,500 to 2,000 $cm^3/s$ flow rates are the most accurate values which yields gas permeability of about 3.152 Darcy.

  • PDF

A Study on the Model Test for Estimating Dynamic Vertical Load Added to Shallow Foundation for Machine (진동기 얕은기초에 추가되는 동적 연직하중 산정을 위한 모형실험 방안 연구)

  • Ha, Ik-Soo;Yoo, Mintaek
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.11
    • /
    • pp.157-165
    • /
    • 2020
  • At present, there are no clearly stated criteria or theories in calculating additional vertical dynamic loads that occur at the machine foundation due to vibration and reflecting them in the design at home and abroad. According to the domestic standard, although it is not a serious vibration condition, the additional dynamic load due to vibration is considered up to 100% of the static load. This is an extremely conservative design. The purpose of this study is to propose a model test method for evaluating the quantitative magnitude of additional dynamic loads that are generated at certain static loads due to vertical mechanical vibrations. As preliminary basic tests for the model tests, the test for evaluating the effects of reflective wave that may occur within a limited size soil box and the test for estimating the natural frequency of the devised model soil-foundation system were carried out. From the analysis of results for basic tests, a method to minimize the influence of the reflected wave was prepared, and the effect of the resonance of the model system was minimized during the model tests. After the basic tests, the main model tests were conducted. Through the proposed main test, the quantitative magnitude of additional dynamic loads caused by machine vibration on a shallow foundation for machine on medium dense sand foundations were evaluated. From the results of the model test, the feasibility of design applied at home and abroad was reviewed.

Construction of the Phosphate-Limitation Inducible Expression Vector Containing the phoA Promoter of Enterobacter aerogenes (Enterobacter aerogenes 의 phoA 유전자 Promoter를 이용한 인 제한환경에서 발현하는 벡터 구축)

  • 장화형;고병훈;박신영;이성호;김성진;임유정;한갑진;김영호;이영근
    • Korean Journal of Microbiology
    • /
    • v.38 no.4
    • /
    • pp.318-321
    • /
    • 2002
  • To induce recombinant protein under phosphate restricted conditions such as soil, we have constructed the expression vector (pEAAP) with phoA gene promoter of Enterobacter aerogenes. To construct the pEAAP, deletion of the T7 promoter and lac operator from pET-22b(+) by BglII-XhoI digestion and addition of the phoA gene promoter (containing the pho box) were performed. To test pEAAP as an expression vector controled by phosphate limitation, pEAPHY1 was constructed with the phytate gene (Bsa-phy1) of Bacillus subtillis var. amyloliquefaciens (KCTC 8913P). Under the phosphate-limitation condition, CK-PHY1 ( Escherichia coli JM109 was transformed with pEAPHY1) expressed the 41 kD Bsa-Phy1 . Also CK-PHY1 formed the clear zone in solid medium containing phytate as a sole phosphate source.

Laboratory Evaluation of Soil Permeability for Sand Using Biot's Acoustic Wave Propagation Theory (Biot 음향 전파 이론을 이용한 실내 사질 시료의 투수계수 산정)

  • Kim, Jin-Won;Song, Chung-Rak
    • Journal of the Korean Geotechnical Society
    • /
    • v.24 no.8
    • /
    • pp.5-12
    • /
    • 2008
  • Biot proposed the frequency dependent formulation for the propagation of elastic waves in saturated media based on the coupled theory mixtures. Based on Biot theory, a special frequency called 'the characteristic frequency' contains unique information of the permeability of soils. The characteristic frequency is measured from I/Q (inverse quality factor) versus frequency curve by an acoustic sweep test, and the permeability of soils is computed from Biot equation. In this paper, laboratory tests are performed at The University of Mississippi using a large test box. The measured characteristic frequency is consistently obtained at 3500 Hz for mortar sands. The computed permeability of mortar sands based on Biot equation turned out 2.01 $10^{-4}m/sec$, while the permeability from the laboratory constant head test turned out 1.49 $10^{-4}m/sec$. This paper addresses the theoretical background and experimental procedure of this technique.

An Experimental Study on the Estimation of Optimum Length of Soil Flow Protector with Wall Stiffness (벽체 강성에 따른 토사유입차단판의 최적 길이 산정에 관한 실험적 연구)

  • Yoo, Jae-Won;Seo, Min-Su;Son, Su-Won;Im, Jong-Chul
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.789-799
    • /
    • 2019
  • The settlement hardly occurs in structures supported by pile foundation such as abutment, culvert but a cavity is formed in the lower part of a structure. As a result, soil discharged from the lateral ground to the cavity accelerates the settlement of the lateral ground of the structure, resulting in a larger settlement. Therefore, in order to prevent problems caused by cavity under the structure supported by pile foundation, soil Flow Protector (briefly called 'FLP'), which can be easily installed on the side of structure, was developed. In this study, an laboratory model test was carried out to prove the reduction effect of settlement and to estimate the optimal installation length of the FLP. As a result, the installation of the FLP reduced the settlement of the lateral ground and prevented the leakage of lateral ground soil into the cavity. If the stiffness of the FLP is small, the state or active earth pressure is generated in the upper part, which is not favorable for stability. But if the stiffness of the FLP is high enough, the passive earth pressure area is generated in the upper part, which will be advantageous for the stability. Also, the increased installation length of FLP is effective to reduce the settlement. And the ratio of the optimal length of the FLP to the box structure height (H = 250 mm) are flexible FLP 1.38, stiff FLP 0.73.

Evaluation of Interface Shear Properties Between Geosynthetics and Soils Through Inclined Board Tests (경사판 시험을 통한 토목섬유와 흙의 접촉 전단 특성 평가)

  • 서민우;신준수;박준범;박인준
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.285-298
    • /
    • 2003
  • Shear properies of geosynthetic/geosynthetic and geosynthetic/soil interfaces which are widely met in landfill sites were evaluated from the inclined board tests. The inclined board testing apparatus is known to reproduce the shear behavior on the low normal stress most accurately. In this study, the friction angle of each interface was estimated and the tensile force mobilized at the geosynthetic was measured as well. The test results showed that the friction angle of each interface and the tensile force of the geosynthetics depended on the amount of normal stress, the type of the geosynthetics used, and the combinations of geosynthetics and soils. In addition, the sand/geotextile/geomembrane interface system was simulated in this study, and it was observed that the tensile force developed at the geomembrane decreased due to the protection effect of the geotextile located above the geomembrane. The test results of this research was compared with those of direct shear tests published, too. Finally, by comparing the measured tensile force of the geosynthetics when the initial displacement of the box occurs, when the slope is called as the critical slope, with suggested analytic solution, the accuracy of analytic solution and the applicability to design were identified.

CASE STUDY ON SEVERELY-DAMAGED REINFORCED EARTH WALL WITH GEO-TEXTILE IN HYOGO, JAPAN Part I: Site Investigation into the cause of damage

  • Jung, Min-Su;Kawajiri, Shunzo;Hur, Jin-Suk;Shibuya, Satoru
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09c
    • /
    • pp.3-10
    • /
    • 2010
  • Case study was carried out on the interpretation of the mechanical behavior of a severely damaged reinforced earth wall comprising geotextile with the concrete panel facing. In this part I, the outline of the damaged reinforced earth wall is in detail described. The background and cause of the damage are discussed based on the results of site investigation. The engineering properties of the fill were examined by performing various in-situ and laboratory tests, including the surface wave survey (SWS), PS-logging, RI-logging, soaking test, the direct shear box (DSB) test, bender element (BE) test, etc. The background as well as the cause for the damage of the wall may be described such that i) a considerable amount of settlement took place over a 3m thick weak soil layer in the lower part of the reinforced earth due to seepage of rainfall water, ii) the weight of the upper fill was partially supported by the geo-textile hooked on the concrete panels (n.b., named conveniently "hammock state" in this paper), and iii) the concrete panels to form the hammock were severely damaged by the unexpectedly large downwards compression force triggered by the tension force of the geotextile. The numerical simulation for the hammock state of the wall, together with counter-measures to re- stabilize the wall is subsequently described in Part II.

  • PDF

Correlations Between the Physical Properties and Compression Index of KwangYang Clay (광양점토의 물리적 특성과 압축지수의 상관성)

  • Bae, Wooseok;Kim, Jongwoo
    • Journal of the Korean GEO-environmental Society
    • /
    • v.10 no.7
    • /
    • pp.7-14
    • /
    • 2009
  • The correlation equation empirically proposed to obtain compression indexes has been proposed to conveniently obtain the value using the soil parameter that can be obtained through simple tests when the number of time of consolidation testing is low or the distribution is large but most of the analyzed regions are limited to certain regions abroad or in the country and multiple data were integrated for use in many cases, thus it is not very reasonable to apply it. Therefore, to establish a new design method considering the uncertainty of the ground, it was selected the Kwangyang port area of which the data have been collected recently thus are relatively more reliable as the subject region of the study in order to maximally reduce the uncertainty of test data. After performing the verification of the normality of the consolidation test data obtained from the selected region and the transformation of variables, a prediction formula was proposed through the regression model with the transformed variables and the proposed regression model with transformed variables was compared with existing empirical equations to verify the suitability of the proposed model formula. After analyzing, it was confirmed that the coefficient of determination was increased after the Box-Cox variable transformation, thus the explanatory power was being enhanced and through the root-mean-square-error method, it was confirmed that the proposed model formula showed the most closed value to the test value.

  • PDF