• Title/Summary/Keyword: Soil aeration

Search Result 114, Processing Time 0.021 seconds

Effect of Aeration Rates on Ammonia Emissions during Composting of Livestock Manure (축분(畜糞) 퇴비화시(堆肥化時) 공기주입율(空氣注入率)이 암모니아 배출(排出)에 미치는 영향(影響))

  • Kang, Hong-Won;Rhee, In-Koo;Park, Hyang-Mee;Ko, Jee-Yeon;Choi, Jyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.32 no.3
    • /
    • pp.304-311
    • /
    • 1999
  • This experiment was conducted to find out the optimum condition of aeration rates for removal of malodor and to improve the compost quality. The aspect of ammonia emission and amounts of volatilization were investigated in the enclosed composting reactor of 242 liters piled with mixed materials of dairy manure and rice straw, which adjusted to 65% of initial moisture content and controlled by four different aeration rates. Mature temperature increased suddenly in initial composting time and decreased with Increasing aeration rates. The treatment of $1.79l\;min^{-1}kg\;dry-solids^{-1}$ results in overcooling and rapid drying of composting materials because of too much aeration. The average concentration of ammonia emitted from composting for 24 days was the range of 25.3 to $239.8mg\;l^{-1}$ and was highest in the treatment of $0.09l\;min^{-1}kg\;dry-solids^{-1}$, followed by 0.90. 0.18 and $1.79l\;min^{-1}kg\;dry-solids^{-1}$. The range of maximum concentration by different aeration rates was $335{\sim}2279mg\;l^{-1}$ and it wan highest in the treatment of $0.09l\;min^{-1}kg\;dry-solids^{-1}$, followed by 0.18, 0.09 and $1.79l\;min^{-1}kg\;dry-solids^{-1}$. Relationship between the ammonia concentration emitted and temperature matured under different aeration rates showed an exponential positive correlation with 1% significance and had a trend of clear increase in ammonia concentration with increasing temperature over $50^{\circ}C$. Most of ammonia volatilized within plays after composting. The volatilization rate of ammonia ranged from 0.056 to 0.453 per dry solids of materials and it was highest in the treatment of $0.09l\;min^{-1}kg\;dry-solids^{-1}$, followed by 0.18, 0.09 and $1.79l\;min^{-1}kg\;dry-solids^{-1}$. Amounts of ammonia volatilized under composting condition of this experiment was estimated to be highest in the aeration range of 0.9 to $1.0l\;min^{-1}kg\;dry-solids^{-1}$.

  • PDF

Effects of Soil Environment on Symbiotic Activities of Arbuscular Mycorrhizal Fungi(AMF) in the Coastal Reclaimed Lands (Arbuscular Mycorrhizal Fungi(AMF)의 공생활성에 미치는 해안 간척지 토양환경의 영향)

  • Koh, Sung-Duk
    • The Korean Journal of Mycology
    • /
    • v.26 no.4 s.87
    • /
    • pp.562-573
    • /
    • 1998
  • The symbiotic activities of arbuscular mycorrhizal fungi (AMF) by analyzing spore density, symbiosis intensity and vertical distribution of AMF spores, phytomasses of higher plants such as Calamagrostis epigeios, Imperata cylindrica, Artemisia scoparia, Aster tripolium and Sonchus brachyotus, and physico-chemical properties of soil were determined in the rhizospheres of higher plants in abandoned two coastal reclaimed lands, which were constructed in 12 and 30 years ago, respectively. Vertical distribution of the AMF spores in the rhizospheres of higher plants was restricted within 20 cm depth from soil surface, which would be closely related with vertical distribution of root system, water table and soil aeration. Of vertical distribution of soil properties, W.C., A-P and K concentrations were increased as soil depth was lowered. In the coastal reclaimed lands, symbiotic activities of the AMF such as spore density and symbiotic intensity, were conspicuously stimulated by the increase of soil pH value, organic matter and total nitrogen concentrations, but inhibited by the increase of moisture, available phosphorus and sodium concentrations in the rhizosphere soil. Phosphorus absorption by higher plants growing in the reclaimed lands increased by the rise of symbiotic activities of AMF. Since symbiotic activities of AMF were stimulated with decreasing soil phosphorus concentrations, higher plants associated with AMF absorbed a large amount of phosphorus from the soil is low phosphorus concentrations.

  • PDF

Greenhouse Gas Emissions from Soils Amended with Biochar (바이오차르 토양투입에 따른 온실가스 발생 변화 연구)

  • Yoo, Gayoung;Son, Yongik;Lee, Seung Hyun;Yoo, Yena;Lee, Sang Hak
    • Korean Journal of Environmental Biology
    • /
    • v.31 no.4
    • /
    • pp.471-477
    • /
    • 2013
  • Biochar amendment to agricultural soil is regarded as a promising option to mitigate climate change and enhance soil quality. It could sequester more carbon within the soil system and increase plant yield by changing soil physicochemical characteristics. However, sustainable use of biochar requires comprehensive environmental assessment. In this sense, it is important to measure additional greenhouse gas emission from soils after biochar addition. We investigated emissions of $CO_2$, $N_2O$, and $CH_4$ from incubated soils collected from rice paddy and cultivated grassland after amendment of 3% biochar (wt.) produced from rice chaff. During incubation, soils were exposed to three wet-dry cycles ranging from 5~85% soil gravimetric water content (WC) to investigate the changes in effect of biochar when influenced by different water levels. The $CO_2$ emission was reduced in biochar treatment compared to the control at WC of 30~70% both in rice paddy and grassland soils. This indicates that biochar could function as a stabilizer for soil organic carbon and it can be effective in carbon sequestration. The $N_2O$ emission was also reduced from the grassland soil treated with biochar when WC was greater than 30% because the biochar treated soils had lower denitrification due to better aeration. In the rice paddy soil, biochar addition resulted in decrease in $N_2O$ emission when WC was greater than 70%, while an increase was noted when WC was between 30~70%. This increase might be related to the fact that available nutrients on biochar surface stimulated existing nitrifying bacterial community, resulting in higher $N_2O$ emission. Overall results imply that biochar amendment to agricultural soil can stabilize soil carbon from fast decomposition although attention should be paid to additional $N_2O$ emission when biochar addition is combined with the application of nitrogen fertilizer.

Studies on Heavy Clay Soil of Tile Drainage (찰진흙개간지의 암반비수에 관한 연구(I))

  • 김시원
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.9 no.2
    • /
    • pp.1296-1300
    • /
    • 1967
  • This study was made through the utilization of heavy soil taken from the experimental plot of heavy soil in Konkuk University, Changan-dong, Sungdong-ku, Seoul. The soil used in the experiment has the following physical characteristics: 1. The soil is very compact, impervious, and unfit for any plant growth, 2. For improvement of the soil, tile drainage practice has been employed, 3. According to the general theory of tile drainage, it is unnatural that the effect of drainage is actually observed in such a soil. The followings are the results of the experiment: 1. Water moved to crosswise when the plotted soil profile was not broke. In this case the upper sloped part was dry while the bottom part was moistned. The upper part of the tile was also moistned. 2. The crosswise movement of water was not observed in the artificially broken plot of subsoil. However, the water flow from the tile was observed for long period as a result of the increase of soil void, seepage, aeration, and water holding capacity. However, the water flow from the tile in the plot of unbroken subsoil was observed only in short period and soon the flow was stopped. 3. the distance between the tile laid in the heavy soil should not exceed 10m for the efficient drainage. 4. When the pF is 2.5 in the subsoil the moisture content was between 23.97% and 28.20%. However, when the water saturated in the subsoil the moisture content was between 34.30% and 22.10%. Accordingly without the higher pF than 2.5 the water can not be absorbed and therefore the drainage can not be occured.

  • PDF

Characterization of landfarming for bioremediation of petroleum-contaminated soil in Korea (유류오염토양의 생물학적 복원을 위한 국내 토양경작기술의 적용 특성)

  • Lee Kwang-Pyo;Lee Cheol-Hyo
    • 한국생물공학회:학술대회논문집
    • /
    • 2004.07a
    • /
    • pp.107-125
    • /
    • 2004
  • A bioremediation of petroleum-contaminated soil in Korea was evaluated for the optimization of enhanced biodegradation and the minimization of effects of seasonal variations, The short-term bioremediation in combination of biopile pretreatment and landfarming was performed by lowering contaminated levels and overcoming the inhibiting factors in the rainy and winter seasons. A microbial density was maintained with indigenous microbial addition for bioaugmentation and with fertilizers for biostimulation. A lesser volatile and biodegradable fraction due to their abiotic removals following the biopile pretreatment was effectively removed by the laterally applied landfarming. The optimal temperature in greenhouse was maintained by buffering of the soil temperature even with slight decreases in removal rates during the winter and extensive leaching of nutrients and contaminants was restricted with adjusting the water contents during the Korean rainy season. Although the tilling process was effective for biodegradation with aeration only, the simultaneous treatment due to apparent mixing of nutrients and microbes more favorably degraded the petroleum than the sequential treatment.

  • PDF

Earthworm Enhanced Bioaugmentation of PCB Contaminated Soil

  • Crowley, David E.;Luepromchai, Ekawan;Singer, Andrew S.;Yang, Chang Sool
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2000.04a
    • /
    • pp.100-107
    • /
    • 2000
  • In a recently developed strategy for in-situ treatment of polychlorinated biphenyls (PCB), bioaugmentation was used in conjunction with a surfactant, sorbitan trioleate, as a carbon source for the degrader bacteria, along with the monoterpene, carvone, and salicylic acid as inducing substrates. Two bacteria were used for soil inoculants, including Arthrobacter sp. st. B1B and Ralstonia eutrophus H850. This methodology achieved 60% degradation of PCBs in Aroclor 1242 after 18 weeks in soils receiving 34 repeated applications of the degrader bacteria. However, an obvious limitation was the requirement for soil mixing after every soil inoculation. In the research reported here, bioaugmentation and biostimulation treatment strategies were modified by using the earthworm, Pheretima hawayana, as a vector for dispersal and mixing of surface-applied PCB-degrading bacteria and soil chemical amendments. Changes in microbial biomass and microbial community structure due to earthworm effects were examined using DNA extraction and PCR-DGGE of 16S rDNA. Results showed that earthworms effectively promoted biodegradation of PCBs in bioaugmented soils to the same extent previously achieved using physical soil mixing, and had a lesser, but significant effect in promoting PCB biodegradation in biostimulated soils treated with carvone and salicylic acid. The effects of earthworms were speculated to involve many interacting factors including increased bacterial transport to lower soil depths, improved soil aeration, and enhanced microbial activity and diversity.

  • PDF

Effect of Aeration Rates on Emissions of Oxygen and Sulfur compound gases during Composting of Dairy Manure (우분(牛糞) 퇴비화시(堆肥花時) 공기주입률(空氣注入率)이 산소 및 황화합물 가스 배출(排出)에 미치는 영향(影響))

  • Kang, Hang-Won;Zhang, Ruihong;Rhee, In-Koo
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.33 no.6
    • /
    • pp.472-481
    • /
    • 2000
  • This experiment used the enclosed bench-scale reactors was conducted to find out optimal aeration rate for reducing the emission of odors and producing the good-quality compost with the mixture of dairy manure and rice straw. The reactors with gas sampler were aerated at four different rates of 0.09, 0.18, 0.90 and $1.79l\;min^{-1}kg^{-1}$dry solids for 574 hours. The oxygen content within composting pile instantly decreased after aeration. Oxygen limitation(below 15%) in the treatments of $0.90l\;min^{-1}kg^{-1}$ and less was exponentially negative relationship with aeration rates and in the range of 35 to 300 hours after aeration. However, the treatment of $1.79l\;min^{-1}kg^{-1}$ didn't show the oxygen limitation. The oxygen consumption rate and the cumulative amount of oxygen consumed by different aeration rates was ranged in $0.80{\sim}1.57O_2g\;h^{-1}\;kg^{-1}VS^{-1}$, $460{\sim}900O_2g\;kg^{-1}VS^{-1}$, respectively, and they were high in the order of 0.90, 1.79, 0.18, $0.09l\;min^{-1}kg^{-1}$. The maximum oxygen consumption rate was estimated in the range of $1.2{\sim}1.3lmin^{-1}kg^{-1}$. The emission concentrations of sulfur compounds such as hydrogen sulfide, sulfur dioxide and methylmercaptan were remarkably high in the initial composting time. Then they were rapidly decreased with the passing of composting time and clearly with increasing aeration rates. Their average concentrations were in the range of 0.03~2.18, 0~0.50, $0.07{\sim}3.38mg\;kg^{-1}$, respectively and high in the order of methylmercaptan, hydrogen sulfide, and sulfur dioxide. Concentrations of sulfur compounds emitted from composting showed exponentially negative relationship at 1% statistically with the oxygen concentration. It was estimated that hydrogen sulfide and methylmercaptan suddenly increased in the level of 5% oxygen concentration and below, that they were little emitted in 15% and over but sulfur dioxide was emitted in the level of 20% oxygen.

  • PDF

Evaluation of Bioremediation Effectiveness by Resolving Rate-Limiting Parameters in Diesel-Contaminated Soil

  • Joo, Choon-Sung;Oh, Young-Sook;Chung, Wook-Jin
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.607-613
    • /
    • 2001
  • The biodegradation rates of diesel oil by a selected diesel-degrading bacterium, Pseudomonas stutzeri strain Y2G1, and microbial consortia composed of combinations of 5 selected diesel-degrading bacterial were determined in liquid and soil systems. The diesel degradation rate by strain Y2G1 linearly increased $(R^2=0.98)$ as the diesel concentration increased up to 12%, and a degradation rate as high as 5.64 g/l/day was obtained. The diesel degradation by strain Y2G1 was significantly affected by several environmental factors, and the optimal conditions for pH, temperature, and moisture content were at pH8, $25^{\circ}C$, and 10%, respectively. In the batch soil microcosm tests, inoculation, especially in the form of a consortium, and the addition of nutrients both significantly enhanced the diesel degradation by a factor of 1.5 and 4, respectively. Aeration of the soil columns effectively accelerated the diesel degradation, and the initial degradation rate was obviously stimulated with the addition of inorganic nutrients. Based on these results, it was concluded that the major rate-limiting factors in the tested diesel-contaminated soil were the presence of inorganic nutrients, oxygen, and diesel-degrading microorganisms. To resolve these limiting parameters, bioremediation strategies were specifically designed for the tested soil, and the successful mitigation of the limiting parameters resulted in an enhancement of the bioremediation efficiency by a factor of 11.

  • PDF

Nodule Phenology and Nitrogen Mineralization of Rhizosphere in Autumn-olive(Elaeagnus umbellata) Stand (보리수나무 군락의 근류계절학 및 근계의 질소무기화)

  • You, Young-Han;Kyung-Bum Kim;Chung-Sun An;Joon-Ho Kim;Seung-Dal Song
    • The Korean Journal of Ecology
    • /
    • v.18 no.4
    • /
    • pp.493-502
    • /
    • 1995
  • Nodulation phenology in relation to plant phenology, vertical distribution of nodul and root biomass in different soil, correlation between nodule and root size, and nitrogen mineralization around the rhizosphere by ion-exchange resin bag buried at 10 cm of soil were studied in Elaeagnus nmbellata (autumn-olive) stand, Korea. Nodulation appeared from spring to autumn and nodule phenology was coincided with the timing of root activity rather than that of foliation. Nodul size increased in proportion to the root size. In the sand dune with the lower root biomass, nodule appeared up to 80 cm deep in soil and the nodule biomass was 1,070 kg/ha, which was the highest value reported for several actinorhizal plants in the temperate regions. It is suggested that nodule distribution and production are mainly influenced by soil aeration among environmental factors. The higher ammonification or lower nitrification rate contrasted markedly with the earlier studies that reported lower ammonification or higher nitrification in actinorhizal plant soil. Nitrogen mineralization rate around the rhizosphere with root and nodule was characterized by higher nitrification rate than that in the control soil without root and nodule.

  • PDF

The Effects of Soil Particle Composition on Soil Physical Properties and the Growth of Woody Plants (토양의 입도조성이 토양의 물리성 및 목본식물의 생장에 미치는 영향)

  • 이소정;김민수
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.25 no.2
    • /
    • pp.54-61
    • /
    • 1997
  • This study has conducted to analyze the crelationship among soil properties and to investigate how they affect soil physical characteristics and plant growth. The experiment of woody plant growth was conducted as follows : Type I was the original soil. Type II, the soil particles smaller than 20${\mu}{\textrm}{m}$ was removed from the original soil. Type III, the soil particles is smaller than 75${\mu}{\textrm}{m}$ was removed from original soil. Wisteria floribunda A.P.DC and Celtis sinensisi Pers. were used for plant growth measurement. 1. Soil type II. the closest to Fuller's curved line, showed high dry bulk density and low in soil pores and saturated hydraulic conductivities. This created poor soil aeration and limited space for the root to growth. When the root did not have sufficient space to grow, there was a lot of physical stress, which hindered the root growth. 2. Soil typeIII was high saturated hydraulic conductivity and a lot of soil pores larger than 10 ${\mu}{\textrm}{m}$. As a result, there were more available spaces for root to spread. It was considered that there was less physical stress for root growth. Therefore, soil typeIII showed significantly greater root growth. 3. Because soil type III has less small particles and saturated hydraulic conductivity was high, and water infiltrates rapidly into the underground when there was rainfall or irrigation. The soil typeIII becomes much stronger soil mechanically due to the less small particles. Therefore, soil typeIII was a suitable material for applying on planting sites where soil compaction is expected.

  • PDF