• Title/Summary/Keyword: Soil Structure Stability

Search Result 203, Processing Time 0.033 seconds

Full Scale Load Tests on Reinforced Slope Structure (사면보강구조물에 대한 실물재하시험과 평가)

  • Kwon, Young-Ho;Park, Shin-Young;Lee, Seung-Hyun;Kang, In-Kyu;Ki, Min-Ju
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2006.10a
    • /
    • pp.241-255
    • /
    • 2006
  • Owing to a landslide or embankment damage be caused by a localized torrential downpour and heavy snowfall resulted from recent abnormal climate, a slope stability is very important. This study is investigate a general slope reinforcement method and applicability improvement of soil nailing method utilized prototype loading test for the facing stiffness effect confirmation. A prototype loading test supplements general slope stability study by numerical analysis or laboratory test with a resonable analysis of slope structure.

  • PDF

Nonlinear earthquake response analysis of CWR on bridge considering soil-structure interaction. (지반-구조물 상호작용을 고려한 교량상 장대레일의 비선형 지진응답해석)

  • Shin Ran Cheol;Cho Sun Kyu;Yang Shin Chu;Choi Jun Seong
    • Proceedings of the KSR Conference
    • /
    • 2004.10a
    • /
    • pp.733-738
    • /
    • 2004
  • Recently continuous welded rail is generally used to ensure running performances and to overcome the problems such as structural vulnerability and fastener damage at the rail expansion joint. Though the use of continuous welded rail on bridge has the advantage of decreasing the vibration and damage of rail, it still the risk of buckling and breaking of rail due to change of temperature, starting and/or breaking force, axial stress concentration and so on. So, VIC code and many methods has been developed by researchers considering rail-bridge interaction. Although there are many research concerning stability of continuous welded rail about temperature change on bridge and starting and/or breaking force, the study of continuous welded mil for earthquake load is still unsufficient. In this study, the nonlinear seismic response analysis of continuous welded rail on bridge considering soil-structure interaction, geotechnical characteristic of foundation and earthquake isolation equipment has been performed to examine the stability of continuous welded rail.

  • PDF

A Study on Seismic Stability of Embankment Structure by Numerical Modeling (수치해석을 통한 제방 구조물의 내진 안정성에 관한 연구)

  • Shin, Eun-Chul;Lee, Seung-Taek;Kang, Hyoun-Hoi;Ryu, Byung-Hyun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09b
    • /
    • pp.186-191
    • /
    • 2010
  • Recently, it has been reported that number of earthquakes was rapidly increased in the Korean Peninsula. According to the interest of seismic analysis, most of construction design must ensure the stability of structure against risks due to earthquake. Therefore, the ground reinforcement and application of seismic standards is necessary and the new structures must secure a stability about Earthquake under the Korea Seismic Analysis Standards. In this study, the 2D numerical analysis was performed to confirm a seismic stability and analysed that behavior of ground and dykes. The numerical seismic response analyses for dykes and its foundation soil were conducted with considering earthquake modes of short-period and long-period, and artificial seismic wave.

  • PDF

A preliminary numerical analysis study on the seismic stability of a building and underground structure by using SSI (SSI를 이용한 건물과 인접지하구조물의 내진 안정성에 대한 기초 수치해석 연구)

  • You, Kwang-Ho;Kim, Young-Jin
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.1
    • /
    • pp.23-38
    • /
    • 2018
  • Up to now, most of studies on seismic analysis have been limited to analyze buildings and underground structures individually so that the interaction between them could not be analyzed effectively. Thus, in this study, a dynamic analysis was conducted for soil-structure interaction with a complex underground facility composed of a building and an adjacent underground structure constructed on a surface soil and the bed rock ground conditions. Seismic stability was analyzed based on interstory drift ratio and bending stress of structure members. As a result, an underground structure has more effect on a high-rise building than a low-rise building. However the above structures were proved to be favorable for seismic stability. On the other hand, tensile bending stresses exceeded the allowable value at the underground part of the building and the adjacent underground structure so that it turned out that the underground part could be weaker than the above part. Therefore, it is inferred that above and underground structures should be analyzed simultaneously for better prediction of their interaction behavior during seismic analyses because there exist various structures around buildings in big cities.

A comparative experimental study on the mechanical properties of cast-in-place and precast concrete-frozen soil interfaces

  • Guo Zheng;Ke Xue;Jian Hu;Mingli Zhang;Desheng Li;Ping Yang;Jun Xie
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.145-156
    • /
    • 2024
  • The mechanical properties of the concrete-frozen soil interface play a significant role in the stability and service performance of construction projects in cold regions. Current research mainly focuses on the precast concrete-frozen soil interface, with limited consideration for the more realistic cast-in-place concrete-frozen soil interface. The two construction methods result in completely different contact surface morphologies and exhibit significant differences in mechanical properties. Therefore, this study selects silty clay as the research object and conducts direct shear tests on the concrete-frozen soil interface under conditions of initial water content ranging from 12% to 24%, normal stress from 50 kPa to 300 kPa, and freezing temperature of -3℃. The results indicate that (1) both interface shear stress-displacement curves can be divided into three stages: rapid growth of shear stress, softening of shear stress after peak, and residual stability; (2) the peak strength of both interfaces increases initially and then decreases with an increase in water content, while residual strength is relatively less affected by water content; (3) peak strength and residual strength are linearly positively correlated with normal stress, and the strength of ice bonding is less affected by normal stress; (4) the mechanical properties of the cast-in-place concrete-frozen soil interface are significantly better than those of the precast concrete-frozen soil interface. However, when the water content is high, the former's mechanical performance deteriorates much more than the latter, leading to severe strength loss. Therefore, in practical engineering, cast-in-place concrete construction is preferred in cases of higher negative temperatures and lower water content, while precast concrete construction is considered in cases of lower negative temperatures and higher water content. This study provides reference for the construction of frozen soil-structure interface in cold regions and basic data support for improving the stability and service performance of cold region engineering.

Track Stability in Accordance with the Depth of Soil above Box Structures Constructed by Non-excavation Method on Railway Embankment (철도하부 비개착공법을 이용한 BOX구조물 설치시 토피고에 따른 궤도구조 안전성에 관한 연구)

  • Jeon, Byeon-Muk;Eum, Ki-Young;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.412-419
    • /
    • 2011
  • With an increase in rail traffic, developing activities around structures of railway have been expanded. Inevitably, the changes to cross though sub-structures of railway have been getting increased. However, this situation affects on the safe operation of trains. Generated wheel load makes on the result in settlement on roadbed and damages on track materials. Therefore, via the numerical analysis were carried out for the box structure and subground using FEM analysis program called. Visual FEA/Geo 4.19. Parametric studies were performed by changing soil depth above box structure constructed in railway embankment. A standard live load was applied to simulate loads from train. Through this study, a minimum required soil depth above subground box structure was recommended based on deformation and stresses in concrete railway system.

  • PDF

Seismic Behaviour of Eco-BELT System and Seismic Effectiveness of T-shaped Deadman Considering Soil-Structure Interface Based on Dynamic Numerical Analysis (흙-구조물 접촉면을 고려한 친환경 옹벽 구조물의 지진시 거동 및 T형 후방지지물의 보강효과에 대한 동해석 분석연구)

  • Kwak, Chang-Won;Park, Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.37 no.8
    • /
    • pp.37-49
    • /
    • 2021
  • A retaining wall system is widely constructed civil structure to maximize the effectiveness of practical use of the land. Recently, the technology which is more eco-friendly and owns seismic stability of the retaining wall system becomes important. In this study, an Eco-BELT system using natural rocks as the front wall is introduced and the seismic characteristics of the Eco-BELT system are analyzed based on 2 and 3 dimensional numerical analysis. The soil-structure interface comprises between backfill soil and natural rocks are considered. The relative density is mainly considered to influence the seismic behavior of Eco-BELT system, and T-shaped deadman is also considered to judge the increase of seismic stability. As a result, lateral displacement of the wall decreases 29.5% in maximum under 90% of relative density and decreases 21.2 to 21.9% with T-shaped deadman, therefore, the seismic effectiveness of T-shaped deadman and increasing relative density of backfill are verified by numerical analysis.

Numerical Study on the Behavior of Ground and Structure in Geosynthetic-Reinforced Soil (GRS) Integral Bridges

  • Sim, Youngjong;Jin, Kyu-Nam;Hong, Eun-Soo;Kim, Hansung;Park, Jun Kyung
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.97-108
    • /
    • 2021
  • In bridge abutment structures, lateral squeeze due to lateral stress of embankment placement and thermal movement of the bridge structure leads to failure of approach slabs, girders, and bridge bearings. Recently, GRS (Geosynthetic-Reinforced Soil) integral bridge has been proposed as a new countermeasure. The GRS integral bridge is a combining structure of a GRS retaining wall and an integral abutment bridge. In this study, numerical analyses which considered construction sequences and earthquake loading conditions are performed to compare the behaviors of conventional PSC (Pre-Stressed Concrete) girder bridge, traditional GRS integral bridge structure and GRS integral bridge with bracket structures (newly developed LH-type GRS integral bridge). The analysis results show that the GRS integral bridge with bracket structures is most stable compared with the others in an aspect of stress concentration and deformation on foundation ground including differential settlements between abutment and backfill. Furthermore, the GRS integral bridge with/without bracket structures was found to show the best performance in terms of seismic stability.

A new integrated method to design of rock structures

  • Aksoy, Okay C.;Uyar, Gulsev G.;Utku, Semih;Safak, Suleyman;Ozacar, Vehbi
    • Geomechanics and Engineering
    • /
    • v.18 no.4
    • /
    • pp.339-352
    • /
    • 2019
  • Rockmass parameters are used in the design of engineering structures built in rock and soil. One of the most important of these parameters is the rockmass Emass (Emass). Determination of the Emass of rockmass is a long, hard and expensive job. Therefore, empirical formulas developed by different researchers are used. These formulas use the elastic modulus of the material as a parameter. This value is a constant value in the design. However, engineering structures remain under different loads depending on many factors, such as topography, geometry of the structure, rock / soil properties. Time is other important parameter for rock/soil structure. With the start of the excavation, the loads that the structure is exposed to will change and remain constant at one level. In the new proposed method, the use of different Emass calculated from empirical formulas using the different material elastic modulus, which has different values under different loads as time dependent, was investigated in rock/soil structures during design. The performance of the stability analysis using different deformation modules was questioned by numerical modeling method. For this query, a sub-routine which can be integrated into the numerical modeling software has been developed. The integrated sub-routine contains the formula for the Emass, which is calculated from the material elasticity modules under time dependent and different constant loads in the laboratory. As a result of investigations conducted in 12 different field studies, the new proposed method is very sensitive.

Physico-chemical Properties of Disturbed Plastic Film House Soils under Cucumber and Grape Cultivation as Affected by Artificial Accumulation History

  • Han, Kyung-Hwa;Ibrahim, Muhammad;Zhang, Yong-Seon;Jung, Kang-Ho;Cho, Hee-Rae;Hur, Seung-Oh;Sonn, Yeon-Kyu
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.48 no.2
    • /
    • pp.105-118
    • /
    • 2015
  • This study was carried out to investigate the effects of profile disturbance with different artificial accumulation history on physico-chemical properties of soil under plastic film house. The investigations included soil profile description using soil column cylinder auger F10cm x h110cm, in situ and laboratory measurements of soil properties at five sites each at the cucumber (Site Ic ~ Vc) and grape (Site Ig ~ Vg) plastic film houses with artificial soil accumulation. The sites except sites Ic, IVc, IVg and Vg, belong to ex-paddy area. The types of accumulates around root zone included sandy loam soil for 3 sites, loam soil for 1 site, saprolite for 2 sites, and multi-layer with different accumulates for 3 sites. Especially, Site IIg has mixed plow zone (Ap horizon) with original soil and saprolite, whereas disturbed soil layers of the other sites are composed of only external accumulates. The soil depth disturbed by artificial accumulation ranged from 20 cm, for Site IIg, to whole measured depth of 110 cm, for Site IVc, Vc, and Site IVg. Elapsed time from artificially accumulation to investigation time ranged from 3 months, Site IIc, to more than 20 years, Site Vg, paddy-soil covering over well-drained upland soil during land leveling in 1980s. Disturbed top layer in all sites except Site Vg had no structure, indicating low structural stability. In situ infiltration rate had no correlation with texture or organic matter content, but highest value with highest variability in Site IIIc, the shortest elapsed time since sandy loam soil accumulation. Relatively low infiltration rate was observed in sites accumulated by saprolite with coarse texture, presumably because its low structural stability in the way of weathering process could result in relatively high compaction in agro-machine work or irrigation. In all cucumber sites, there were water-transport limited zone with very low permeable or impermeability within 50 cm under soil surface, but Site IIg, IIIg, and Vg, with relatively weak disturbance or structured soil, were the reverse. We observed the big change in texture and re-increase of organic matter content, available phosphate, and exchangeable cations between disturbed layer and original soil layer. This study, therefore, suggest that the accumulation of coarse material such as saprolite for cultivating cash crop under plastic film house might not improve soil drainage and structural stability, inversely showing weaker disturbance of original soil profile with higher drainage.