DOI QR코드

DOI QR Code

Seismic Behaviour of Eco-BELT System and Seismic Effectiveness of T-shaped Deadman Considering Soil-Structure Interface Based on Dynamic Numerical Analysis

흙-구조물 접촉면을 고려한 친환경 옹벽 구조물의 지진시 거동 및 T형 후방지지물의 보강효과에 대한 동해석 분석연구

  • Kwak, Chang-Won (Dept. of Civil & Environmental Engrg., Inha Technical College) ;
  • Park, Inn-Joon (Dept. of Infrastructure & Systems, Hanseo Univ.)
  • 곽창원 (인하공업전문대학 토목환경과) ;
  • 박인준 (한서대학교 인프라시스템학과)
  • Received : 2021.07.22
  • Accepted : 2021.08.13
  • Published : 2021.08.31

Abstract

A retaining wall system is widely constructed civil structure to maximize the effectiveness of practical use of the land. Recently, the technology which is more eco-friendly and owns seismic stability of the retaining wall system becomes important. In this study, an Eco-BELT system using natural rocks as the front wall is introduced and the seismic characteristics of the Eco-BELT system are analyzed based on 2 and 3 dimensional numerical analysis. The soil-structure interface comprises between backfill soil and natural rocks are considered. The relative density is mainly considered to influence the seismic behavior of Eco-BELT system, and T-shaped deadman is also considered to judge the increase of seismic stability. As a result, lateral displacement of the wall decreases 29.5% in maximum under 90% of relative density and decreases 21.2 to 21.9% with T-shaped deadman, therefore, the seismic effectiveness of T-shaped deadman and increasing relative density of backfill are verified by numerical analysis.

옹벽은 절, 성토부가 포함된 토지의 효율적 이용을 위하여 설치하는 대표적인 옹벽 구조물이다. 과거 국토개발 시기에는 시공성, 구조적 안정성 및 경제성에 치중하였다면, 최근에는 친환경적이고 내진 안정성을 갖춘 옹벽기술개발의 필요성이 증대되고 있는 실정이다. 본 연구에서는 자연석을 활용한 친환경적 옹벽 구조물(Eco-BELT)을 제시하고 지진 시 동적 거동특성을 2, 3차원 수치해석을 이용하여 분석하였다. 자연석과 배면 뒤채움 흙 사이에 형성되는 접촉면을 고려하여 수치해석에 적용하였으며 동적거동에 영향을 미치는 주요 변수로서 뒤채움재의 다짐도를 기준으로 다짐도 증가에 따른 동적거동을 분석하고 T형 후방지지물의 유무에 따른 내진성능 향상을 수치해석적으로 검토하였다. 그 결과 다짐도 증가 시 옹벽 수평변위가 최대 29.5% 감소하여 다짐도 증가에 따른 내진안정성 증대효과를 확인하고 T형 후방지지물 설치 시 최대 수평변위는 약 21.2~21.9%가 감소하는 것으로 산출되어 지진하중 재하 시 T형 후방지지물의 보강효과를 확인하였다.

Keywords

Acknowledgement

본 논문은 (주)에코밸리의 지원을 통해서 수행되었습니다. 연구지원에 감사드립니다.

References

  1. Changwei, Y., Shixian, Z., Zhang, J., and Bi, J. (2015), Seismic Stability Time-Frequency Analysis Method of Reinforced Retaining Wall, Mathematical Problems in Engineering, Vol.2015, No.1, Article ID 178692.
  2. Cho, K. Y., Roh, K. T., and Seo, B. S. (2009), Natural Wall SystemsEsthetic View Element in a Downtown Facilities, Professional Engineer, Vol.42, No.4, pp.55-61.
  3. D'Appolonia, D.J., D'Appolonia, E., and Brissette, R.F. (1970), Settlement of Spread Footings on Sand, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.96, No.SM2, pp.754-761. https://doi.org/10.1061/JSFEAQ.0005552
  4. Design Standard of Slope. (2016), Ministry of Land, Infrastructure and Transport, pp.74.
  5. FLAC User manual (2005), Itasca Consulting Group.
  6. Ha, W.J., Jeong J.H., Oak C.N., and Lee B.G. (2002), A Study on Retraining Wall using Natural Rock, Proceedings of Korean Society of Civil Engineers, pp.2521-2525.
  7. Jo, S.B., Ha, J.G., Choo, Y.W., and Kim, D.S. (2013), A Case Study of Evaluating Inertial Effects for Inverted T-shape Retaining Wall via Dynamic Centrifuge Test, Journal of the Korean Geotechnical Society, Vol.29, No.4, pp.33-44. https://doi.org/10.7843/kgs.2013.29.4.33
  8. Jung, J.H. (2012), A study on Compaction and Settlement of Backfill Soil at Segmental Reinforced Earth, M.S. Thesis, Department of Civil Engineering, Graduate School, Yeungnam University, pp. 71-75.
  9. Kim, D.B., Shin, E.C., and Park, J.J. (2019), Dynamic Active Earth Pressure of Gabion-Geotextile Bag Retaining Wall System Using Large Scale Shaking Table Test, Journal of the Korean Geo-Environmental Society, Vol.20, No.12, pp.15-26.
  10. Korean Design Standard 11 80 05, Korea Construction Standard Center, pp.11.
  11. Korean Design Standard 11 80 10, Korea Construction Standard Center, pp.4-6.
  12. Korean Design Standard 11 80 15, Korea Construction Standard Center, pp. 3.
  13. Korean Design Standard 17 00 00, Korea Construction Standard Center, pp.13-14.
  14. Lee, S.M., Choi, C.H., and Shin, E.C. (2013), A Study of Connection Stability for Reinforced Retaining Wall Constructed with Soilbag with Varying Connection Strength, Journal of Korean Geosynthetics Society, Vol.12, No.1, pp.101-107. https://doi.org/10.12814/jkgss.2013.12.1.101
  15. Meyerhof, G. G. (1956), Penetration Tests and Bearing Capacity of Cohesionless Soils, Journal of the Soil Mechanics and Foundation Division, ASCE, Vol.82, No.1, pp.1-19.
  16. Seismological Annual Report. (2020), Korea Meteorological Administration, pp.1-5.
  17. Sitar, N., Mikola, R.G., and Candia, G. (2012), Seismically Induced Lateral Earth Pressures on Retaining Structures and Basement Walls, Proceedings of GeoCongress 2012At: Oakland, CA, pp. 335-358.
  18. The Experiment of Vine for Covering the Traffic Noise Barrier. (1999), Korea Expressway Corporation Research Institute, pp.11.
  19. Yoo, C.S., Kim, S.B., Jung, H.S., and Byun, J.S. (2006), Field Instrumentation of A Geosynthetic Reinforced Large Size Modular Block Wall, Proceedings of Korean Society of Civil Engineers, pp. 2871-2874.
  20. Yoon, S.J., Kim, S.R., and Kim, M.M. (2002), Analysis of Influence Factors on the Seismic Earth Pressure Acting on Gravity Walls, Proceedings of Earthquake Engineering Society of Korea, pp. 75-82.