• Title/Summary/Keyword: Soil Remediation

Search Result 795, Processing Time 0.025 seconds

Cr(VI) Resistance and Removal by Indigenous Bacteria Isolated from Chromium-Contaminated Soil

  • Long, Dongyan;Tang, Xianjin;Cai, Kuan;Chen, Guangcun;Shen, Chaofeng;Shi, Jiyan;Chen, Linggui;Chen, Yingxu
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.8
    • /
    • pp.1123-1132
    • /
    • 2013
  • The removal of toxic Cr(VI) by microorganisms is a promising approach for Cr(VI) pollution remediation. In the present study, four indigenous bacteria, named LY1, LY2, LY6, and LY7, were isolated from Cr(VI)-contaminated soil. Among the four Cr(VI)-resistant isolates, strain LY6 displayed the highest Cr(VI)-removing ability, with 100 mg/l Cr(VI) being completely removed within 144 h. It could effectively remove Cr(VI) over a wide pH range from 5.5 to 9.5, with the optimal pH of 8.5. The amount of Cr(VI) removed increased with initial Cr(VI) concentration. Data from the time-course analysis of Cr(VI) removal by strain LY6 followed first-order kinetics. Based on the 16S rRNA gene sequence, strain LY6 was identified as Pseudochrobactrum asaccharolyticum, a species that had never been reported for Cr(VI) removal before. Transmission electron microscopy and energy dispersive X-ray spectroscopy analysis further confirmed that strain LY6 could accumulate chromium within the cell while conducting Cr(VI) removal. The results suggested that the indigenous bacterial strain LY6 would be a new candidate for potential application in Cr(VI) pollution bioremediation.

Enhanced Biodegradation of Lindane Using Oil-in-Water Bio-Microemulsion Stabilized by Biosurfactant Produced by a New Yeast Strain, Pseudozyma VITJzN01

  • Abdul Salam, Jaseetha;Das, Nilanjana
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.11
    • /
    • pp.1598-1609
    • /
    • 2013
  • Organochlorine pesticide residues continue to remain as a major environmental threat worldwide. Lindane is an organochlorine pesticide widely used as an acaricide in medicine and agriculture. In the present study, a new lindane-degrading yeast strain, Pseudozyma VITJzN01, was identified as a copious producer of glycolipid biosurfactant. The glycolipid structure and type were elucidated by FTIR, NMR spectroscopy, and GC-MS analysis. The surface activity and stability of the glycolipid was analyzed. The glycolipids, characterized as mannosylerythritol lipids (MELs), exhibited excellent surface active properties and the surface tension of water was reduced to 29 mN/m. The glycolipid was stable over a wide range of pH, temperature, and salinity, showing a very low CMC of 25 mg/l. Bio-microemulsion of olive oil-in-water (O/W) was prepared using the purified biosurfactant without addition of any synthetic cosurfactants, for lindane solubilization and enhanced degradation assay in liquid and soil slurry. The O/W bio-microemulsions enhanced the solubility of lindane up to 40-folds. Degradation of lindane (700 mg/l) by VITJzN01 in liquid medium amended with bio-microemulsions was found to be enhanced by 36% in 2 days, compared with degradation in 12 days in the absence of bio-microemulsions. Lindane-spiked soil slurry incubated with bio-microemulsions also showed 20-40% enhanced degradation compared with the treatment with glycolipids or yeast alone. This is the first report on lindane degradation by Pseudozyma sp., and application of bio-microemulsions for enhanced lindane degradation. MEL-stabilized bio-microemulsions can serve as a potential tool for enhanced remediation of diverse lindane-contaminated environments.

A Study on Groundwater Quality and Biodegradability at the Petroleum Contaminated Sites of Kangwon and Gyeonggi Provinces, Korea (강원도 및 경기도 소재 유류오염지역의 수질특성, 발현 생분해능과 오염물질 저감속도)

  • Choi, Hyun-Mi;Lee, Jin-Yong;Park, Yu-Chul
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.2
    • /
    • pp.24-33
    • /
    • 2010
  • This study focused on the groundwater quality, biodegradability and attenuation rate at the petroleum contaminated sites of Kangwon and Gyeonggi Provinces, Korea. For groundwater quality, Kangwon site showed chemical compositions of $Ca-SO_4+Cl$, $Ca-HCO_3$ and $Na+K-HCO_3$ types, while Gyeonggi site showed chemical compositions of $Ca-SO_4$, $Ca-HCO_3$ and $Na-HCO_3$ types. $Na+K-HCO_3$ and $Na-HCO_3$ types were detected only in February. Among many biodegradation processes, the majority was attributed to biodegradation from denitrification in both area. In Kangwon site, biodegradation from denitrification occupied 63.5%, and in Gyeonggi site it was 39.45%. Biodegradation from the most efficient aerobic respiration occupied 7.12% in Kangwon site, while Gyeonggi site in it did 27.29%. Point attenuation rate of BTEX in Gyeonggi site (GW-22) was 0.0182 $day^{-1}$, half life of BTEX was 84 days, and thus 124 days (0.34 year) would be required to clean up this site. Mean of point attenuation rate of TPH in Kangwon site was 0.0088 $day^{-1}$, mean of half life was 257 days, and thus 462 days would be required to clean up the site. Mean of point attenuation rate of TPH in Gyeonggi site was 0.0387 $day^{-1}$, mean of half life was 55 days, and thus remediation time was calculated as 99 days.

Effect of Humic acid on the Distribution of the Contaminants with Black Shale (휴믹산이 black shale과 오염물질의 분포에 미치는 영향에 대한 연구)

  • Min, Jee-Eun;Park, Jae-Woo
    • Journal of Korean Society on Water Environment
    • /
    • v.20 no.6
    • /
    • pp.670-675
    • /
    • 2004
  • Humic acids are macromolecules originated from natural water, soil, and sediment. The characteristics of humic acid enable it to change the distribution of metals as well as many kinds of organic contaminants and to determine the sorption of them from soil solution. To see the effect of humic acid on the removal rate of organic contaminants and heavy metals, batch-scale experiments were performed. As a natural geosorbent, black shale was used as a sorbent media, which showed hight sorption capacity of trichloroethylene (TCE), lead, cadmium and chromium. The effect of sorption-desorption, pH, ionic strength and the concentration of humic acid was taken into consideration. TCE sorption capacity by black shale was compared to natural bentonite and hexadecyltrimethylammonium (HDTMA) modified bentonite. The removal rate was good and humic acid also sorbed onto black shale very well. The organic part of humic acid could effectively enhance the partition of TCE and it act as an electron donor to reduce Cr(VI) to Cr(III). Cationic metal of Pb(II) and Cd(II) also removed from the water by black shale. With 3 mg/L of humic acid, both Pb(II) and Cd(II) were removed more than without humic acid. That could be explained by sorption and complexation with humic acid and that was possible when humic acid could change the hydrophobicity and solubility of heavy metals. Humic acid exhibited desorption-resistivity with black shale, which implied that black shale could be an alternative sorbent or material for remediation of organic contaminants and heavy metals.

광양광산 갱내수에 의한 하천 생태계 영향 평가 및 갱내수의 처리

  • Lee Geun-Yeong;Kim Ju-Yong;Lee Byeong-Tae;Kim Gyeong-Ung;An Gwang-Guk;Gwon Yeong-Ho;Kim Jeong-Yeon;Park Yeong-Seok
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2005.04a
    • /
    • pp.397-401
    • /
    • 2005
  • Acid mine drainage and waste of abandoned mine area have caused serious water pollution and destruction of an ecosystem because of exposing to environment without an appropriate treatment. Gwang-yang mine area also has a serious problem in the nearby residential area and waterway ecosystems. The objectives of this research are to develop the most suitable remediation system for acid mine drainage by using waste materials, and to diagnose stream environments impacted by acid mine drainage through the new ecological health assessment methodology, and thus ultimately providing a restoring methodology to mining regions. In the water system health assessment, the result of ESHI model, RBP and Karr suggested by US EPA is revised by ecological features of our country, come to ESHI score 13; 'Very poor' at some points. Together with pH value and heavy metal concentration, it's the aggravation of ecological health index caused by chemical disturbances. In the acid mine drainage treatment, we apply marine shells and slags to this system. Slags had the best removal ability for heavy metals, but pH value was more than 10 exceeding the standard for drain water. In case of marine shells, pH of treated water maintained 7 to 8, and concentrations of Fe and Zn decreased significantly after treatment.

  • PDF

Effects of Short-Term Oxygen Exposure on Anaerobic Reductive Dechlorination and Formate Fermentation by Evanite Culture (혐기성탈염소화 혼합균주에서 산소 노출이 탈염소화 및 수소발생 발효에 미치는 영향)

  • Hong, Ui-Jeon;Park, Sun-Hwa;Lim, Jong-Hwan;Ahn, Hong-Il;Kim, Nam-Hee;Lee, Suk-Woo;Kim, Young
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.114-121
    • /
    • 2010
  • Oxygen sensitivity and substrate requirement have been known as possible reasons for the intricate growth of Dehalococcoides spp. and limiting factors of for routinely applying bioaugmentation using anaerobic Dehalococcoides-containing microbes for remediating chlorinated organic compounds. To explore the effect of the short-term exposure of the short-term exposure of oxygen on Dehalococcoides capability, dechlorination performance, and hydrogen production fermentation from formate, an anaerobic reductive dechlorination mixed-culture (Evanite culture) including dehalococcoides spp. was in this study. In the results, once the mixed-culture were exposed to oxygen, trichloroethylene (TCE) degradation rate decreased and it was not fully recovered even addition of excess formate for 40 days. In contrast, hydrogen was continuously produced by hydrogen-fermentation process even under oxygen presence. The results indicate that although the oxygen-exposed cells cannot completely dechlorinate TCE to ethylene (ETH), hydrogen fermentation process was not affected by oxygen presence. These results suggest that dechlorinating microbes may more sensitive to oxygen than fermenting microbes, and monitoring dechlorinators activity may be critical to achieve an successful remediation of a TCE contaminated-aquifer through bioaugmentation using Dehalococcoides spp..

Removal of Non-volatile Contaminant from Aquifer using Surfactant-enhanced Ozone Sparging (오존과 계면활성제를 이용한 대수층 내 비휘발성 물질 제거)

  • Yang, Su-Kyeong;Shin, Seung-Yeop;Kim, Heon-Ki
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.37-45
    • /
    • 2010
  • Surfactant-enhanced ozone sparging (SEOS), an advanced version of SEAS (surfactant-enhance air sparging) was introduced in this study for the first time for removal of non-volatile contaminant from aquifer. The advantages of implementing SEAS, enhanced air saturation and expanded zone of sparging influence, are combined with the oxidative potential of ozone gas. Experiments conducted in this study were tow fold; 1-dimensional column experiments for the changes in the gas saturation and contaminant removal during sparging, and 2-dimensional box model experiment for the changes in the size of zone of influence and contaminant removal. An anionic surfactant (SDBS, sodium dodecylbenzene sulfonate) was used to control surface tension of water. Fluorescein sodium salt was used as a representative of watersoluble contaminants, for its fluorescence which is easy to detect when it disappears due to oxidative degradation. Three different gases (air, high-concentration ozone gas, and low-concentration ozone gas) were used for the sparging of 1-D column experiment, while two gases (air and low-concentration ozone gas) were used for 2-D box model experiment. When SEOS was performed for the column and box model, the air saturation and the zone of influence were improved significantly compared to air sparging without surface tension suppression, resulted in effective removal of the contaminant. Based on the experiments observations conducted in this study, SEOS was found to maintain the advantages of SEAS with further capability of oxidative degradation of non-volatile contaminants.

Pre-adaptation to Cu during Plant Tissue Culture Enhances Cu Tolerance and Accumulation in Begonia (Begonia evansiana Andr.)

  • Ahn, Yeh-Jin;Park, Jong-Moon
    • Journal of Ecology and Environment
    • /
    • v.30 no.3
    • /
    • pp.271-276
    • /
    • 2007
  • A simple and efficient protocol was developed for culturing Cu-tolerant and Cu-accumulating plants via pre-adaptation to Cu during plant tissue culture. We induced multiple shoots from begonia (Begonia evansiana Andr.) leaf explants on MS medium supplemented with naphtaieneacetic acid and benzyladenine. After 3 months, small plantlets were transferred to MS medium supplemented with $100{\mu}M\;CuCl_2$ for pre-adaptation to Cu and cultured for 5 months. Then, these plantlets were individually planted in pots containing artificial soil. An additional 500 mg of Cu dissolved in 1/4 strength MS solution was applied to each pot during irrigation over the course of 2 months. We planted pre-adapted and control begonias in soil from the II-Kwang Mine, an abandoned Cu mine in Pusan, Korea, to examine their ability to tolerate and accumulate Cu for phytore-mediation. Pre-adapted begonias accumulated $1,200{\mu}g$ Cu/g dry root tissue over the course of 45 days. On the other hand, non-Cu-adapted controls accumulated only $85{\mu}g$ Cu/g dry root tissue. To enhance Cu extraction, chelating agents, ethylenediamine tetraacetic acid (EDTA)-dipotassiun and pyridine-2,6-dicarboxylic acid (PDA), were applied. While the chelating agents did not enhance accumulation of Cu in the roots of control begonias, EDTA application increased the level of Cu in the roots of pre-adapted begonias twofold (to $2,500{\mu}g$ Cu/g dry root tissue). Because pre-adapted begonias accumulated a large amount of Cu, mainly in their roots, they could be used for phytostabilization of Cu-contaminated soils. In addition, as a flowering plant, begonias can be used to create aesthetically pleasing remediation sites.

Reduction of Organics in an Unsaturated Zone Using Zero-Valent Metals (영가금속을 이용한 불포화대에서 유기물질의 환원적 분해)

  • Kim, Jong-Gun;Kwon, Hee-won;Kim, Jeong-Jin;Hwang, In-Seong;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.31 no.1
    • /
    • pp.77-85
    • /
    • 2022
  • Environmental contamination by organic compounds are not only restricted to water, but extends to soil and groundwater as well. However, highly oxidized compounds, such as halogenated organics and nitro-compounds, can be detoxified employing reducing methods. Permeable reactive barrier is one of the representative technologies where zero-valent metals (ZVMs) are employed for groundwater remediation. However, organics contaminates often contaminate the unsaturated zone above the groundwater. Despite the availability of technologies like soil vapor extraction and bioremediation, removing organic compounds from this zone represents several challenges. In this study, the reduction of nitrobenzene to aniline was achieved using zero-valent iron (ZVI) under unsaturated conditions. Results indicated that the water content was an important variable in this reaction. Under dry conditions (water content = 0.2%), the reduction reaction was inhibited; however, when the water content was between 10% and 25% (saturated condition), ZVI can reduce nitrobenzene. Palladized iron (Pd/Fe) can be used to reduce nitrobenzene when the water content is between 2.5% and 10%. The reaction was evaluated over a wide range of temperatures (10 - 40 ℃), and the results indicated that increasing the temperature resulted in increased reaction rates under unsaturated conditions.

Oxidation of Chloroethenes by Heat-Activated Persulfate (과황산의 열적활성화 및 염소계용제의 산화분해)

  • Zhang, Hailong;Kwon, Hee-Won;Choi, Jeong-Hak;Kim, Young-Hun
    • Journal of Environmental Science International
    • /
    • v.26 no.11
    • /
    • pp.1201-1208
    • /
    • 2017
  • Oxidative degradation of chlorinated ethenes was carried out using heat-activated persulfate. The activation rate of persulfate was dependent on the temperature and the activation reaction rate could be explained based on the Arrhenius equation. The activation energy of persulfate was 19.3 kcal/mol under the assumption that the reaction between the sulfate radical and tricholoroethene (TCE) is very fast. Activation could be achieved at a moderate temperature, so that the adverse effects due to high temperature in the soil environment were mitigated. The reaction rate of TCE was directly proportional to the concentration of persulfate, indicating that the remediation rate can be controlled by the concentration of the injected persulfate. The solution was acidized after the oxidation, and this was dependent on the oxidation temperature. The consumption rate of persulfate was high in the presence of the target organic, but the self-decomposition rate became very low as the target was completely removed.